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Measuring and upscaling micromechanical
interactions in a cohesive granular material†

Arnaud Hemmerle, ‡ab Yuta Yamaguchi, ‡cde Marcin Makowski,a

Oliver Bäumchen af and Lucas Goehring *c

The mechanical properties of a disordered heterogeneous medium depend, in general, on a complex

interplay between multiple length scales. Connecting local interactions to macroscopic observables,

such as stiffness or fracture, is thus challenging in this type of material. Here, we study the properties of

a cohesive granular material composed of glass beads held together by soft polymer bridges.

We characterise the mechanical response of single bridges under traction and shear, using a setup

based on the deflection of flexible micropipettes. These measurements, along with information from

X-ray microtomograms of the granular packings, then inform large-scale discrete element model (DEM)

simulations. Although simple, these simulations are constrained in every way by empirical measurement

and accurately predict mechanical responses of the aggregates, including details on their compressive

failure, and how the material’s stiffness depends on the stiffness and geometry of its parts.

By demonstrating how to accurately relate microscopic information to macroscopic properties, these

results provide new perspectives for predicting the behaviour of complex disordered materials, such as

porous rock, snow, or foam.

1 Introduction

Disordered porous materials are ubiquitous in nature and
industry. The mechanical behaviour of these materials depends
on the local interactions between their components,1–4 which
can be of various shapes, compositions, and length scales, from
nanometres in colloidal glasses to millimetres in sedimentary
rocks. Understanding and predicting the relationship between
their microscopic structure and macroscopic mechanical
response is of importance for applications in engineering,
geoscience and materials science, and is the topic of active
research in both experimental and numerical domains.2–11

As an original example, it has been shown how birds such as
swallows build strong nests using their saliva to form cohesive
bonds between mud granules, in an analogy with the mechanical
properties observed in artificial cohesive granular materials.4

Linking the mechanical properties of a disordered solid to
its local structure presents difficulties. For example, the failure
of a disordered material can suddenly change from ductile to
brittle, depending on the density, strength, and plasticity of
its contacts.12–15 Experimentally, it is hard to study such effects
in realistic systems: these are complex by nature and have
intrinsic characteristics that cannot be systematically varied.
While different bottom-up approaches using model systems
have emerged within the last ten years,16–20 they are still rare.
Thus, most progress in this field has been made in numerical
modelling,5–9,21 with the inherent difficulty that a too simplistic
model might not capture the complexity observed experi-
mentally, while an over-detailed one may not give any useful
general law.

A tunable experimental model of a cohesive granular mate-
rial has been recently introduced,19,20 which we will use here to
help overcome these challenges. It consists of glass beads held
together by elastic bridges of polydimethylsiloxane (PDMS),
a solidified elastomer, whose Young’s modulus can be easily
varied by changing its composition (see Fig. 1). Despite its
apparent simplicity this material shows a rich range of beha-
viours, allowing investigation of the mechanical properties
of cohesive granulates in particular and of disordered solids
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in general. Its elastic19 and fracture20 properties can be finely
controlled by varying the stiffness, size, and density of the
PDMS bonds linking the beads. The wide range of tunable
parameters makes this clean and well-defined system an appro-
priate candidate to investigate scaling laws in the mechanics of
disordered structures including, for examples, avalanches in
snow, onsets of earthquakes, fracture of rocks and building
materials, or poroelasticity and fluid–rock interactions in rocks
under large hydrostatic pressure.

This cohesive granular material also shows intriguing
mechanical properties. For instance, it fails under uniaxial
compression by sliding along a shear plane (as expected for
this type of material) but only after a remarkably large yield
strain.19 Such a feature is the result of an interplay between
microscopic properties at the scale of individual beads and the
large-scale (re-)organisation of the packing under mechanical
load. A full understanding of the macroscopic properties of the
material requires a good characterisation of the local contacts
and a proper upscaling of microscopic laws towards larger
assemblies of beads.

To this end, we report here direct measurements of the
constitutive relationship of the bonds between individual
particles in this type of cohesive granular material, and then
demonstrate how to use these measurements to accurately
predict the elastic properties of such a material. To link the
microscopic and macroscopic length scales we use a discrete

element model (DEM), developed by some of us to investigate
the failure mechanisms of cohesive granulates, and which
incorporates a Griffith-like energy-based failure criterion for
the bonds.15 Both the experiments and model involve hard
particles, connected by softer bridges, and in this limit we show
that the bridge geometry is a key parameter in upscaling
mechanical properties. The experimental observations will
inform the parameters used in the model and we will then
show that this approach can reproduce, both qualitatively and
quantitatively, key features observed in the experiments, such
as the results of uniaxial compression tests.

2 Micromechanics of cohesive
granulates

We first characterised the micromechanical interactions
between particles in a cohesive granular medium. If two
particles or grains are mechanically bound to each other, they
may interact via normal and tangential displacements, and by
rolling and twisting. These mechanisms can be modelled by
elastic springs with associated spring constants for the normal
and tangential deformations (kbond

n and kbond
t , respectively), and

bending stiffnesses for the rolling and twisting ones. Aiming
for a micromechanical model which reproduces the essential
properties of this type of material with as few parameters as
necessary, we developed a protocol for measuring the normal
and tangential spring constants over a single pair of beads,
while assuming contributions from bending and twisting to be
less relevant. Here, we describe these methods and give direct
observations of the elasticity of the bonds between particles
taken from a cohesive granular material.

2.1 Experimental methods

Micromechanical testing was conducted using flexible glass
micropipettes (see Fig. 2), in an approach adapted from one
used to measure the forces exerted by cells and other micro-
organisms.22

Samples of cohesive granular material were prepared, following
published methods.19 The elastic bridges consist of polydimethyl-
siloxane (PDMS, Sylgard 184, Dow Corning), a curable elastomer,
using a mass ratio of base to cross-linker of 40 : 1. Uncured PDMS
was mixed with glass beads of 365 mm diameter (Sigmund Lindner
GmbH, 5% polydispersity) and at a polymer volume fraction
W = 2.3%, poured into a cylindrical mould and cured at
90 1C overnight. The Young’s modulus of the PDMS itself,
Ep = 50 � 5 kPa, was measured by unconfined uniaxial
compression of a cylinder of cured polymer. The high base to
cross-linker ratio, and low Ep, allows the bridges to be soft
enough to give measurable deformations during the micro-
mechanical tests, while still behaving rigidly and elastically.
Finally, like many other elastomers, PDMS is known to be
nearly incompressible, with a Poisson ratio nZ 0.49 measured
over a wide range of curing conditions.23,24

For each test a single pair of beads, connected by a PDMS
bridge, was detached from a sample of cohesive granular

Fig. 1 Structure of a cohesive granular material. (a) A micrograph of a
cohesive granular sample shows the capillary bridges of solid PDMS
formed between glass beads. (b) We model each pair of connected beads
as spheres of diameter D linked by a truncated cylinder of diameter d and
height l and separated by a gap of size d0. (c) X-ray tomogram of a sample
compressed in situ between two pistons. The inset shows a cross-section
of the 3D data. The sample is a cylinder of 4.25 mm diameter � 4.05 mm
height, made of beads of diameter D = 200.9 mm.
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material using a scalpel under an inverted microscope (IX-73,
Olympus), taking care not to stretch or bend the bridge. The
beads were moved onto a glass slide, allowing for half of one
bead to protrude over the edge of the slide. A droplet of epoxy
was deposited onto the end of the dangling bead, which was
then quickly put into contact with a flat silicon wafer. After the
epoxy was cured the glass slide was removed, leaving the pair of
beads attached normally to the wafer. Finally, a glass micro-
pipette was glued onto the other bead, resulting in configura-
tions as shown in Fig. 2.

The micropipettes are narrow glass filaments (borosilicate
glass capillaries, World Precision Instruments, TW100-6),
pulled by an horizontal pipette puller (P-97 Micropipette Puller,
Sutter Instruments) and bent into a characteristic U-shape in
a microforge (MF-900, Narishige). This shape gives them an
elastic response in extension, as the glass would break before
any plastic deformation would occur. It also allows pure normal
(Fn) or shear (Ft) forces to be independently directed across
the bridge, minimising any off-axis contributions. A pipette’s
spring constant is fixed by its geometry and measured using
a pre-calibrated AFM cantilever (Veeco).22 For example, one
typical pipette had a diameter of 0.3 mm and side lengths,

as defined in Fig. 2, of a1 = 2.5 mm, a2 = 13 mm, a3 = 3.5 mm,
a4 = 8.5 mm and a5 = 117 mm, resulting in a spring constant of
40 � 2 N m�1. During an experiment, one end (top of a5) of the
pipette was kept fixed, while the wafer was mounted on and
moved by a motorised translation stage (Newport, Conex LTA-HS).

Images were recorded of experiments at 10 frames per second
with a digital camera (FLIR Systems, Grasshopper 3, GS3-U3-
41C6M-C) and a 4� (1.37 mm per pixel) or 10� objective (0.55 mm
per pixel). Bead positions were measured using cross-correlation
image analysis with a sub-pixel resolution.22 Glass spikes made on
the pipette with the microforge allowed for independent tracking
of the beads and pipette. The normal/extensional (dn) or tangen-
tial (dt) deformation of the bridge was deduced from the relative
displacement of the two beads, while the force exerted on the
pipette was calculated from its deflection and spring constant.22

Finally, the bead diameters were found by fitting circles to their
shapes in the microscopy images, while the bridge diameters,
d, were measured across their middle. For both diameters, the
measurement uncertainty is estimated to be � 2 mm. The initial
bridge spanning distance, d0, i.e. the initial surface-to-surface
separation between the beads, was always found to be lower than
2 mm, but could not be measured more accurately.

Fig. 2 Schematics of the micromechanical tests in the normal (a) and tangential (b) configurations. The dotted frames correspond to the images shown
as inserts in the example force–displacement measurements given in (c) and (d). Linear fits (red lines) to the force–displacement data give the spring
constants kbond

n or kbond
t . Panels (e) and (f) summarise the spring constant measurements made of different bridge diameters d and at various speeds. The

lines are the results of simulations of bridges in similar conditions, assuming an initial bridge length, d0, of either 1 mm (dotted line) or 2 mm (solid line).
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2.2 Results of micromechanical tests

Tests were performed on bridges with diameters d between
50 and 270 mm (see Movies S1 and S2 in the ESI† for examples
of normal and shear tests, respectively). In each case a spring
constant was calculated from a linear fit to the force–displace-
ment curve in the linear regime of deformation, as demon-
strated in Fig. 2(c and d). The restoring forces were linear over a
wide range of displacements, especially compared to the initial
particle separation, d0. This confirms that we can treat the
bonds as Hookean springs. We further checked that the
response was in the quasi-static limit by repeatedly testing
some bridges at increasing deformation speeds of 1 to 10 mm s�1,
with minimal differences in the spring constants.

As shown in Fig. 2(e and f), values for the normal spring
constants, kbond

n , lay in the range of 200–800 N m�1, while
tangentially, kbond

t was between 5–30 N m�1. Despite the
dispersion of results for bridges prepared in a similar manner,
it is clear that kbond

n c kbond
t , meaning that bridges are strong in

tension, but easy to shear.

2.3 Scaling spring constants: FEM simulation

The micromechanical measurements were made for beads of
one particular size, D, and a fixed polymer content W and
stiffness Ep. In order to explore how a bridge’s spring constants
depend on these variables, we performed simulations replicating
our micromechanical tests, but for various bond geometries.

To this end, we used COMSOL Multiphysics to build a finite-
element model (FEM) simulation of an elastic bridge. The
bridge was modelled as a cylinder of diameter d, truncated by
two spherical caps of diameter D and surface separation d0, as
in Fig. 1(b). It was treated as a linear elastic material, with
Young’s modulus Ep and Poisson ratio n = 0.49, consistent with
literature measurements of PDMS as a practically incompres-
sible material.23,24 A normal or tangential displacement was
imposed on one of the sphere–bridge interfaces, while the
other was kept fixed, using no-slip boundary conditions for
both. The total reaction force exerted on either interface was
measured as a function of the displacement, from which follow
the spring constants kbond

n and kbond
t of the simulated bridge.

The key result is shown in Fig. 2(e and f). Namely, if we use
the experimental values of D, d and Ep, and take d0 = 2 mm, then
the simulations accurately predict the magnitudes of kbond

n and
kbond

t along with their relatively weak dependence on d. The
simulation’s sensitivity to d0 can also potentially explain why

there is such a large variation in the experimentally measured
spring constants. For example, by adjusting d0 between 1 and 2
mm (which is below our experimental resolution), the simulated
spring constants span the range of most experimental values.

Otherwise, the scaling of the spring constants with the
bridge geometry is not trivial, although it is clear that there
should be a linear dependence on Ep. In the following we will
therefore use the COMSOL simulations to predict representa-
tive values for kbond

n and kbond
t , given specific bead and bridge

sizes. In particular, we are interested in mimicking experi-
mental uniaxial compression tests with a discrete element
model of large-scale bead assemblies, and for these cases have
simulated bridges with microscopic parameters matching
experimental observations (see Table 1).

3 Upscaling micromechanical
interactions

Cohesive granular materials can behave as linear elastic solids,
with well-defined failure conditions.2,8,11,16,19,20,25,26 However,
predicting the homogeneous elastic response of members of
this class of material from knowledge of their micro-structure,
i.e. upscaling a microscopic model, is made difficult by their
discrete and disordered nature. Even more challenging is the
prediction of how, and when, such a system will fail, because of
the importance of nonlinear effects such as force chains and
strain localisation when approaching failure.8,15,26–30

Here, we pursue this goal of upscaling the micromechanical
properties of a cohesive granular material. Experimentally, we
imaged such materials using X-ray microtomography, and
extracted the positions of the constituent beads along with
statistical information about the bridge networks. These mea-
surements, combined with the micromechanical characterisa-
tion of single bridges (see Section 2), are then used as inputs for
a minimal model of cohesive granular materials.15 This model
is thus constrained in all its parameters by observations at the
microscopic scale. In Section 4, we will then simulate uncon-
fined uniaxial testing of the modelled material, and find
that the results compare favourably to in situ experimental
compression tests.

3.1 X-ray microtomography: bead and bridge geometry

X-ray microtomography data obtained in a previous study19

were further analysed in the present work (sample A, see Fig. 1(c)),

Table 1 Key parameters used in the micromechanical modelling. Values are given for the materials used in the micromechanical tests (Section 2), as well
as the two samples, A and B, for which the initial bead positions are known from X-ray microtomography (Section 3.1). In all cases Ep, d and D are
measured experimentally. The bond stiffnesses are directly measured for the micromechanical test samples, and these results used to validate a FEM
simulation of an elastic bridge, which is then used to predict kbond

n and kbond
t for the other samples

Property Symbol Micromechanical tests Sample A Sample B

Bond Young’s modulus Ep 50 kPa 1.5 MPa 0.64 MPa
Bond diameter d 50–270 mm 73.9 mm 72.1 mm
Bead diameter D 365 mm 200.9 mm 200.9 mm
Bond stiffness, normal kbond

n 200–800 N m�1 5760 N m�1 2345 N m�1

Bond stiffness, tangential kbond
t 5–30 N m�1 325 N m�1 131 N m�1
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and complemented by data from a similar sample which featured
softer bonds (sample B). Briefly, unconfined uniaxial compression
tests of cohesive granular samples were performed in situ within
an X-ray micro-computed tomography system (GE Nanotom).
The samples were composed of monodisperse beads of diameter
D = 200.9 � 1.9 mm (Whitehouse Scientific), mixed with PDMS of
Young’s modulus Ep = 1.5 � 0.15 MPa (sample A) or Ep = 0.64 �
0.05 MPa (sample B). These materials were shaped into cylinders
of 4.25 mm diameter � 4.05 mm height for sample A, and
4.25 mm diameter � 4.82 mm height for sample B. Tomography
scans were performed before compression, and consisted of sets
of 2000 projections with a resolution of 1132 � 1132 pixels and a
voxel size of 5 mm. The samples were then compressed at a speed
of 5 mm min�1, and their stress–strain curves will be compared
with simulations in Section 4, and Fig. 3.

Beads were detected within the reconstructed sample
volumes using Matlab, and particle positions determined
by finding the centroid of each individual connected volume
after segmentation, with a precision of about one voxel (see
Tables S1 and S2 in the ESI† for particle positions and Movies
S3 and S4 in the ESI† for illustrating their detection). However,
the X-ray contrast between the PDMS bridges and the glass
beads was insufficient for the automatic detection of which
particles were linked by bridges. Instead, we manually counted
bridges on beads within the interior of the sample. For example,
in sample B the coordination number Z, here defined as the
average number of bridges per bead, was found to be 7.4 � 0.1
(standard error), which is consistent with previous results from a
similar sample.20 The distributions of bridge diameters were
also extracted by manual inspection of the microtomograms.
For example, for sample A measurements from 100 bridges

were well-approximated by a Gaussian distribution with a mean
of 73.9 mm and standard deviation of 12.7 mm.

The characteristic properties of the two experimental sam-
ples are given in Table 1, along with the bond stiffnesses
estimated through the micromechanical testing and COMSOL
bridge model.

3.2 Discrete element model of cohesive granulates

To link the microscopic measurements to the bulk properties of
a cohesive granular material, we used a discrete element model
(DEM) that simulates the interactions between particles and
their bonds. As the development of this model has been
detailed elsewhere,15 we focus only on its main features here,
including the modifications made for this study.

3.2.1 Model setup and compression test
Bead positions. The initial bead locations are taken from

the relative positions of particles as measured in either of the
two microtomograms. The natural dispersion in bead sizes
and voxel resolution of the tomography data lead to a small
uncertainty in these positions, which could result in slightly
overlapping beads. We avoided this issue by randomly varying
the diameter of each particle with the Box–Muller method31

using a Gaussian distribution with a mean diameter of
D = 200.9 mm and a standard deviation of 5%, while constrain-
ing the sizes of the particles to prevent overlap. Ensembles of at
least 5 different realisations of particle sizes were used, and the
error bars in Fig. 4 and 5 give the standard deviations of
measurements on such ensembles.

Bridge network. To match the experimental value of the
average coordination number (i.e. bonds per particle), nearby

Fig. 3 Comparison of experimental (a and b) and simulated (c and d)
stress–strain curves. In each case the Young’s modulus, E, is obtained by a
least-squares fit to the linear region (black lines). Each simulated curve
corresponds to a different initial realisation of the particle diameters, but
using the same particle positions. Panels (a) and (b) share the same y-axis,
as do (c) and (d). The grey area in (c) and (d) gives the number of bonds that
break, N, in each increment of strain.

Fig. 4 Comparison of how the Young’s modulus of a cohesive granular
sample, E, depends on the Young’s modulus of the bridges composing it,
Ep. The simulations (open symbols) reproduce the experimental relation-
ship (closed squares) seen between E and Ep, and show the importance of
the microscopic bridge length d0 in determining the macroscopic stiffness
of the sample. The dashed line shows E = Ep, for comparison.
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particles were considered to share a bond at the start of the
simulation only if their initial surface-to-surface distance was
smaller than 0.064D; this condition leads to Z = 7.4 for particles
in the interior of the simulated packing. Aiming for a model
with as few parameters as possible, we assign all bridges in
each sample the same values of kbond

n and kbond
t , estimated from

the average diameters D and d and using d0 = 2 mm, unless
otherwise mentioned. In other words, for the purposes of
setting up the bond stiffnesses we treat all bonds as identical,
rather than introducing a function that would depend on their
specific initial geometries. Spring constants corresponding to
samples A and B are given in Table 1. These were evaluated by a
look-up-table of discrete values from the FEM calculations,
giving a precision of about 2%.

Compression test. Once a model sample has been configured
it is confined between two flat, rigid walls. Uniaxial compres-
sion tests are then simulated by keeping the top wall fixed
and moving the lower one upwards at a constant speed.
For example, sample A was compressed at 46.4 mm s�1,
corresponding to a speed of 10�4 in the non-dimensionalised
terms of the simulation,15 and the same dimensionless speed
was used for all simulations. This velocity is a compromise
between requiring the dynamics to be slow enough to repro-
duce the quasi-static experiments, while keeping a reasonable
computation time.

3.2.2 Model for the interactions. The DEM simulates the
dynamics of a collection of spherical particles that can interact
with each other through contact forces (glass–glass) and
cohesive bonds (PDMS), modelled as linear, Hookean springs.
Each bead, i, is represented by a sphere with mass mi, centre

position ri, diameter Di, angular velocity xi and moment of
inertia Ii. The particle can interact with its neighbours through
normal forces and torques. The resulting translational and
rotational equations of motion are

mi
d2ri

dt2
¼
X
jai

Fn
ij nij þ F ij

t
� �

; (1)

Ii
dxi

dt
¼ Di

2

X
jai

nij � F ij
t; (2)

where nij = (ri � rj)/|ri � rj| is the normal unit vector between
particles i and j and where their interaction force is decom-
posed into a normal component, Fn

ij, and any tangential forces,
Ft

ij.
The normal force between two particles, Fn

ij, has three
possible contributions: a contact force due to particle overlap,
Fc

ij, an elastic force due to a bond, Fbond
ij , and a dissipation force,

Fdiss
ij . The first two of these are conservative, and expressed as

Fc
ij þ Fbond

ij ¼
�kglassn dnij þ kbondn d0ij dnij � 0;

�kbondn dnij � d0ij
� �

dnij 4 0;

8><
>:

(3)

where dn
ij = |ri � rj| � (Di + Dj)/2 is the surface separation of the

particles. The terms involving kbond
n are only applied if there is a

bond between the two particles. For bead overlap we set the
spring constant kglass

n = 10kbond
n , which is high enough to

represent a system of stiff beads connected by softer springs,
but low enough to avoid numerical instabilities; we have
confirmed15 that simulation results are robust to changes in
k glass

n . Finally, we include dissipation due to particle deforma-
tion as F diss

ij = �z(vij�nij), where vij is the relative velocity between
beads i and j, and z is a dissipation rate.15

Tangential forces can also arise between particles which
share a bond, or which overlap. For this, a linear restoring force
is generated by any relative tangential displacement of two
beads around their first point of contact (i.e. initial positions,
for a bond). A cohesive bond is treated as a spring with a
tangential spring constant kbond

t . For particle overlap, as with
normal forces, we use kglass

t = 10kbond
t . In either case the

tangential force is limited by a Coulomb friction law with a
friction coefficient m = 0.5.32

The interaction of a particle with either the top or bottom
wall is treated the same way as with another particle, although
no bonds need to be considered, only overlap. The total
compressive stress in the system, s, is then the sum of all the
forces acting on a wall, divided by the initial cross-sectional
area of the sample.

Finally, under significant enough tension or shear, a PDMS
bond will fail; fracture testing has shown that the dominant
mode of failure is by bonds detaching, or peeling away from the
glass beads.20 For the corresponding mechanism in our model
we adopt a Griffith-like failure criterion, by comparing the strain
and surface energies of a bond. As with the DEM simulations, the
bond is here treated as elastic and incompressible. This leads to

Fig. 5 The Young’s modulus of the material, E, increases with increasing
content of PDMS, W, in a similar manner in both the experiments (closed
squares) and the simulations (open circles), up to W = 2.7% (dashed line).
Experimentally, this value corresponds to the appearance of trimer struc-
tures in the system,19 while only pendular bridges are observed for lower
W. Here, Ep = 250 kPa in both experiments and simulations.
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the failure condition15

Drn2 þ
dtij

���
���2

12
� 2

Glij

Ep
: (4)

For this, the bond is treated as a cylinder of height lij.
Heterogeneity in the failure condition is provided through the
distribution of values of lij. The normal displacement of the
bond is Drn = dn

ij � dij
0, and G = 7 J m�2 is the measured

interfacial energy between PDMS and glass.20,33 Whenever a
bond meets this criterion, it is removed from the simulation.

4 Elasticity of cohesive granulates

Having measured the constitutive relationship of the individual
bonds between the particles of a cohesive granular material,
and outlined a model of this class of material that is designed
around these microscopic measurements, we now test the
predictions of this model. Specifically, we will compare the
stress–strain curves of simulations of uniaxial compression
against experiments, and then explore how the elastic response
changes with the stiffness and size of the bridges. A related
manuscript15 makes use of the same model, but focuses on the
macroscopic failure mechanisms, and how these depend on the
packing density of the material.

4.1 Stress–strain curves

First, we compare the results of uniaxial compression in
matched experimental and simulated geometries. The experi-
ments are described in Section 3.1, with a typical sample
shown in Fig. 1(c), and the compression tests follow protocols
described in more detail elsewhere.19 We show in Fig. 3(a and b)
the normal stress, s, measured as a function of the compressive
strain, e, for samples A and B. The corresponding results from
simulations in the same geometries (i.e. using values from Table 1
and particle positions taken from X-ray tomograms) are given in
Fig. 3(c and d). Videos of the simulations are given as Movies S5
and S6 in the ESI.†

For both samples the model accurately captures the shape of
the stress–strain curves, including the yielding behaviour at
large e, although the modelled system behaves about twice as
stiffly as the experiments. Different realisations of the simula-
tions show little variation in the predicted response. All curves
start with a gradual build-up of stress, with a concave
shape over a strain range corresponding to a displacement of
B100 mm, or one bead radius. This regime corresponds to the
progressive contact between the piston and the sample, whose
surface is uneven on this scale, rather than any inherent non-
linear elasticity.19 A linear response follows, from which the
Young’s modulus is measured by a least-squares fit. Here, we
have used an extrapolation of the linear regime of deformation
to define our zero-point of strain (i.e. e = 0). With this conven-
tion, the linear regime extends up to about 4% in the experi-
ments as well as in the simulations, after which point failure
sets in.

In the simulations, we also tracked the number of bonds
broken in each time step, binned into strain windows of size
De = 4.2 � 10�4. These data, shown in Fig. 3(c and d) for
representative cases, give a measure of the microcrack activity,
which remains low until the end of the linear regime. This
confirms that the response is essentially elastic until the peak
stress or failure point is reached. Our companion paper15

explores the failure processes of cohesive granular materials
in more detail; here, we simply note that failure proceeds by a
shear band forming across the sample (see Movies S5 and S6 in
the ESI†), as in the experiments.19

4.2 Variation with polymer stiffness

The elastic responses of diverse types of cohesive granular
materials are known to be controlled by the cohesive compo-
nent (i.e. the matrix), despite the fact that it represents only a
small minority phase.4,11,16,19 This is particularly true when the
matrix material is softer than the particles or grains it binds
together. For our samples the Young’s modulus of the material,
E, increases with, and is about an order of magnitude higher
than that of, the stiffness of the PDMS composing its cohesive
bridges, Ep.19,20

In order to compare our model predictions to the experi-
mental results, we systematically varied Ep in simulations of
sample A, keeping the other parameters fixed. The results are
shown in Fig. 4 alongside those from similar experiments19

(note that these used slightly larger beads with higher poly-
dispersity: D = 210 mm� 5%). The simulations correctly capture
the scaling of E with Ep, including the deviation from a linear
dependency of E p Ep for stiff aggregates, although they again
predict stiffer samples than seen experimentally. Investigating
this discrepancy in more detail, we repeated the simulations
using spring constants calculated assuming initial particle
separations of d0 = 1 mm (rather than 2 mm, see Section 2.3).
The two different sets of spring constants, which span the
range of behaviours observed by the micromechanical testing,
had a significant impact on the stiffness of the aggregate, with
E changing by about 60%. This increase is comparable to the
increase in kbond

n , and demonstrates the sensitivity of the
mechanical properties of this class of materials to the exact
geometry and nature of the bonds between particles.

4.3 Variation with polymer content

Finally, we focus on the stiffness of the aggregate when varying
the volume fraction of polymer in the material, W. Experi-
mentally, E increases approximately linearly with W up to a
critical value of W* = 2.7%. After this point a much slower
increase of the stiffness with polymer content is observed (see
Fig. 5).19 This change coincides with the point where the
polymer bridges coalesce into more complex structures like
trimers (i.e. the pendular–funicular transition19,34). In other
words, above W* the addition of more matrix material does not
strengthen the bonds between particles, but rather fills in the
larger pore spaces.

To test the model’s response in the pendular or capillary
regime, we systematically varied the bridge diameter d in
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simulations of sample A, while fixing all other parameters. The
spring constants kbond

n and kbond
t were calculated as in Section

2.3, for each value of d. Empirically,19 the volume fraction
W p d2 (i.e. the bridge cross-section) and we used this to
estimate W from d.

We compare the moduli E from the DEM simulations with
experiments on similar samples (again, using D = 210 mm
beads) in Fig. 5. The two sets of results agree up to the end of
the pendular regime (dashed line in Fig. 5), although the
simulations are again consistently stiffer than the experiments.
As expected, the simulations diverge from the experiments in
the funicular regime, W 4 W*, where the polymer in the
experiments starts to form larger suprastructures, rather than
simple independent bridges between particles. In this regime,
different assumptions about the elasticity of the particle bonds
would be required, as only a fraction of the matrix material will
be supporting the stress.

5 Discussion & conclusion

This work has presented direct measurements of the micro-
mechanical properties of cohesive granular media, where hard
particles are connected by softer bonds. These measurements
complement previous characterisation of the bulk elasticity and
failure criteria of this type of material.19,20 A simple discrete
element model,15 was then used to mediate between the two
limits, by upscaling the microscopic interactions in order to
make predictions about larger assemblies of cohesive particles.

Despite their minimal set of ingredients, the DEM simula-
tions correctly predict the relationships between the micro-
scopic nature of the bridges and the macroscopic properties of
a sample, and provide insights on the underlying mechanisms.
Thus, they confirm how crucial are the details of the bond
or matrix geometry to the elastic and fracture properties of
cohesive granular materials. A small difference in the bridge
length can significantly change, for example, the stiffness of the
whole aggregate.

In particular, the simulations reproduce two major experi-
mental results: the scaling of the material stiffness, E, with the
matrix stiffness, Ep, over several orders of magnitude; and the
scaling of E with the matrix content, W, within the pendular
regime. The fact that the simulations diverge from the experi-
mental results precisely at W = W*, which corresponds to the
transition to the funicular regime, shows the role of supra-
structures, such as trimers, in the softening of the samples at
large W. Wang et al.11 observed a similar transition in stiffness
with increasing matrix content using millimetric beads and a
harder cement, suggesting that a cross-over of stiffness with W
is a fairly general result.

Nevertheless, the material appeared to be consistently stiffer
in the simulations than experiments. This is arguably a result of
our choice of a single value for the bridge length d0. Changing
d0 from 1 to 2 mm while calculating the bond spring constants
significantly decreased the stiffness of the material, as shown
in Fig. 4, and it is clear that a realistic granular material would

show a distribution of values for d and d0. Indeed, a close
inspection of tomography scans indicates the presence of
bridges with a spanning distance significantly higher than
2 mm,20 which would presumably contribute to a lower stiffness
of the bridges and of the ensemble, although this would need
to be confirmed in practice.

Interestingly, the model also correctly predicts the strain at
which a sample ceases to have a linear response to compression
and starts to fail (Fig. 3), which demonstrates the accuracy of
the criterion used for breaking a bond in the simulations.
Regarding eqn (4), we see that bonds are more likely to break
in tension than in shear, and that the breakage depends on
physical parameters, such as the Young’s modulus and the
interfacial energy. This is a key result for future modelling of
failure in such a cohesive granular medium, or for the design of
this type of material.

Finally, the numerical simulations also give access to quan-
tities difficult to measure in experimental systems, such as the
spatio-temporal dynamics of microscopic failures within the
sample, and a companion article15 uses these signals to further
explore failure in this model. In cohesive granular materials,
brittle failure is expected to be abrupt with minimal precursory
damage, while a transition into a ductile mode involves signi-
ficant activity prior to catastrophic breakdown, which can be
analysed for precursor signals. Studies of these materials will
benefit from the present relatively simple minimal model,
informed in all aspects by explicit microscale quantification,
which accurately predicts elastic bulk response.
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