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Divalent ligand-monovalent molecule binding

Mathijs Janssen, *ab Harald Stenmarkb and Andreas Carlson *a

Simultaneous binding of a divalent ligand to two identical monovalent molecules is a widespread

phenomenon in biology and chemistry. Here, we describe how two such monovalent molecules B bind

to a divalent ligand AA to form the intermediate and final complexes AA�B and AA�B2. Cases wherein the

total concentration [AA]T is either much larger or much smaller than the total concentration [B]T have

been studied earlier, but a systematic description of comparable concentrations [AA]T and [B]T is missing.

Here, we present numerical and analytical results for the concentrations [AA�B] and [AA�B2] for the entire

range 0 o [B]T/[AA]T o N. Specifically, we theoretically study three types of experimental procedures:

dilution of AA and B at fixed [B]T/[AA]T, addition of AA at fixed [B]T, and addition of B at fixed [AA]T. When

[AA]T and [B]T are comparable, the concentrations of free ligands and molecules both decrease upon

binding. Such depletion is expected to be important in cellular contexts, e.g., in antigen detection and in

coincidence detection of proteins or lipids.

1 Introduction

Chemical binding is at the heart of many processes in biology,
including oxygen binding to haemoglobin, self assembly, anti-
bodies binding to antigens, and growth factors binding to their
transmembrane receptors.1–7 In many cases, binding inter-
actions should be specific and strong, yet reversible.8–11 One
way to accomplish such a ‘‘molecular velcro’’ is through ligands
containing many ligating units per molecule: Multivalent ligands
are known to bind some transmembrane receptors more readily
than their monovalent counterparts (with one binding site per
ligand).8 This makes multivalent ligands interesting in clinical
applications, where less therapeutic cargo is needed for the same
response. The intuitive explanation why multivalent ligands can
bind more readily to some receptors on a plasma membrane or a
viral envelope goes as follows. After the binding of a first ligating
unit with association constant K1, other ligating units of a
multivalent ligand are close to other membrane-bound receptors
as well. Around a first bound unit, a second ligating unit is
thought to sweep out a semi circle with a radius set by the (fixed)
distance between ligating units.12–15 As this distance is a few
nanometers at most, the effective concentration of ligating units
belonging to a partly-bound multivalent ligand is much higher
than the concentration of unbound ligands nearby. More generally,
for flexible rather than stiff linkers between ligating units,16,17

effective concentrations can be determined rigorously within statis-
tical mechanics.18,19

In turn, high effective concentrations are reflected in a high
association constant K2 for binding a second ligating unit of a
multivalent ligand, and the same for further binding steps.
Systems for which K2/K1 4 1 are called cooperative.20–23 In the
above example of large effective concentrations, one speaks of
apparent cooperativity. This is to distinguish it from true
cooperativity based on allostery,24 which refers to binding
pockets whose binding affinity changes when nearby pockets are
occupied, as happens for the binding of oxygen to haemoglobin.25

In either way, the hallmark of cooperativity is the switching
from mostly-unbound to mostly-bound ligands over a narrow
concentration range.20

Equations for the concentrations of molecules involved in
binding reactions are typically nonlinear and with a high poly-
nomial order. In two simple cases—the binding of a monovalent
ligand to a monovalent receptor1,3 and the binding of two different
monovalent ligands to one type of monovalent protein26—the
concentrations of all involved species can be expressed analytically
nonetheless. For more complicated reactions, analytical progress
is often only possible if one molecular species is assumed to be in
excess as compared to other species.20,27 This limit is only appro-
priate to certain systems and experiments. If no molecular species
is in excess as compared to the other present in the system, the full
reaction-rate equations should be solved, and binding will deplete
the unbound species.

In this article we explore the interplay between multivalency,
cooperativity, and depletion. We do so by discussing the
reversible binding of a divalent ligand AA to two identical
monovalent molecules B [Fig. 1(a)],

AA + 2B " AA�B + B " AA�B2, (1)
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as it is the simplest binding reaction that can display nontrivial
effects of multivalency and cooperativity.20,21,23 Eqn (1) also has
value in its own right: It captures hormone action,28 the binding
of divalent antibodies to antigens on pathogens,12,13,27,29–32 and
it was realised in synthetic systems.16 In many biological
systems to which eqn (1) may be relevant, B may represent a
protein or a cell membrane receptor. Yet, to keep our discussion
completely general, we refer to B simply by ‘‘molecule’’. We
denote the total volumetric concentration of ligands AA and
molecules B—both bound and unbound—by [AA]T and [B]T.
Most prior works studied the reaction in eqn (1) assuming either
[AA]T { [B]T or [AA]T c [B]T [Fig. 1(b)]. For instance, Hunter and
Anderson20 asserted that the concentration of monovalent
molecules is hardly affected ([B] E [B]T) by the reaction in
eqn (1) if it happens at [AA]T { [B]T; Perelson and DeLisi27

asserted that the concentration of divalent ligands is hardly
affected ([AA] E [AA]T) by the reaction in eqn (1) if it happens
at [AA]T c [B]T. As we move away from these limits, neither
[AA] E [AA]T nor [B] E [B]T can hold as the reaction in eqn (1)
will deplete both the free ligands AA and the molecules B. Here,
we study the binding of divalent ligands AA to monovalent
molecules B over the complete range 0 o [B]T/[AA]T o N.

2 Model

The reaction in eqn (1) does not affect the total number of AA
and B molecules, which gives the following particle-
conservation constraints

[AA]T = [AA] + [AA�B] + [AA�B2], (2a)

[B]T = [B] + [AA�B] + 2[AA�B2]. (2b)

In Appendix A we show how the reaction-rate equations asso-
ciated with eqn (1) reduce at steady state to

K1 ¼
1

2

½AA � B�
½B�½AA� ; K2 ¼ 2

½AA � B2�
½B�½AA � B�; (3)

where K1 and K2 are the association constants, and where
factors of 1/2 and 2 account for the degeneracy of the inter-
mediate complex AA�B. While ref. 13, 20, 21 and 30 used the

same convention, ref. 27 absorbed the factor 1/2 into K1, and
ref. 29 and 32 absorbed the factors 1/2 and 2 into K1 and K2.

To model divalent antibody binding to monovalent surface-
bound antigens, ref. 12 and 13 expressed concentrations of
antigens and (partly) bound complexes in numbers per unit
area.13,29 Yet, the governing equations of ref. 13 and 29 could
also be cast into the form of eqn (2) and (3), that is, with
volumetric concentrations only, and the effect of reduced positional
freedom of surface-bound molecules absorbed into the constants K1

and K2. Hence, though volumetric concentrations appear in our
eqn (2) and (3), this set of equations can just as well describe a
binding process wherein either AA or B is confined to a thin
(membrane) surface (see also page 13 of ref. 1). Still, an assumption
underlying the derivation of eqn (3) in terms of concentrations is
that all species are well mixed. This assumption may be violated for
certain types of B molecules, for instance, receptors that cluster at
the plasma membrane.33,34

From the four expressions in eqn (2) and (3) we can
determine the four unknown concentrations [AA], [B], [AA�B],
and [AA�B2] in terms of the four physical parameters K1, K2,
[AA]T, and [B]T. First, we eliminate [AA] and [B] from eqn (3)
with eqn (2),

[AA�B] = 2K1([B]T � [AA�B] � 2[AA�B2])
� ([AA]T � [AA�B] � [AA�B2]), (4a)

½AA � B2� ¼
K2

2
½B�T � ½AA � B� � 2½AA � B2�
� �

½AA � B�: (4b)

Next, we rewrite eqn (4b) to

½AA � B2� ¼
K2

2

ð½B�T � ½AA � B�Þ½AA � B�
1þ K2½AA � B� ; (5)

with which we eliminate [AA�B2] from eqn (4a),

a[AA�B]3 + b[AA�B]2 + c[AA�B] + d = 0,

a � K2(K1 � K2),

b � 2(K1 � K2 � [AA]TK1K2),

c � 2K1[AA]T(K2[B]T � 1) � 2K1[B]T � K1K2[B]T
2� 1,

d � 2K1[AA]T[B]T. (6)

The cubic eqn (6) for [AA�B] can be solved analytically with
Cardano’s formula. Unfortunately, its solution for general K1,
K2, [AA]T, and [B]T, presented in Appendix B, is too cumbersome
to be of use. We therefore also present analytical solutions to
eqn (5) and (6) for specific (limiting) values of K1, K2, [AA]T,
and [B]T in Appendices C–E. First, Appendix C covers the case
K2 = K1. The cubic term in eqn (6) then vanishes, leaving behind
a quadratic equation that can be easily solved analytically for
[AA�B] [see eqn (C2a)]. Also [AA�B2] and the ‘‘occupancy’’20

y � ([AA�B]/2 + [AA�B2])/[AA]T are governed by simple expres-
sions [see eqn (C4)]. Intuitively, for K2 = K1, each divalent ligand
AA acts as two independent monovalent ligands A binding to
two molecules B: y coincides with a literature expression3 for
the concentration of bound A�B at a molecule-to-ligand ratio

Fig. 1 (a) Binding of two monovalent molecules B to a divalent ligand AA,
to form the complexes AA�B and AA�B2. (b) Different relative concentra-
tions of [AA]T and [B]T.
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[B]T/(2[A]T). Second, Appendix D covers the case [AA]T { [B]T.
We rederive Hunter and Anderson’s results20 for [AA�B] and
[AA�B2] and show that they contain errors of order O([AA]T/[B]T).
Last, Appendix E covers the case [AA]T c [B]T. For this case, we
solve eqn (6) with a power series approximation to [AA�B]. Our
solutions to [AA�B] and [AA�B2] differ from Perelson and DeLi-
si’s results27 from O([B]T

3/[AA]T
3) onwards.

While in eqn (6) we isolated [AA�B] from eqn (2) and (3), we
could have also chosen to isolate [B] instead. Indeed, cubic
equations for [B] were reported in eqn (S) of ref. 13 and eqn (25)
of ref. 29 [which we rederive in Appendix F]. However, neither of
those articles discussed the dependence of [AA�B] and [AA�B2]
on K1, K2, [AA]T, and [B]T in as much detail as we do below.

3 Results

We present numerical results for [AA�B] and [AA�B2] from
eqn (5) and (6) for different choices of fixed and varied K1, K2,
[AA]T, and [B]T. Specifically, we mimic a dilution experiment,
wherein we vary [AA]T and [B]T at fixed [B]T/[AA]T; a titration-like
experiment, wherein we vary [AA]T at fixed [B]T; and another
titration-like experiment, wherein we vary [B]T at fixed [AA]T.
While the concentrations [AA]T and [B]T can be experimentally
varied over decades, K1 and K2 are set by fixed molecular
properties.18,19 Accordingly, we mostly consider different but
fixed values of the ‘‘cooperativity parameter’’ a = K2/K1. a is
related to the free energy of interaction between sites, see
eqn (10) of ref. 20. We reinforce our numerical solutions of
eqn (5) and (6) by the aforementioned analytical expressions for
specific parameter values [see Appendices C–E].

3.1 Diluting a solution of AA and B at fixed [B]T/[AA]T

We consider a solution with initial concentrations [AA]T and
[B]T to which solvent is added. In such a dilution experiment,
[AA]T and [B]T decrease at fixed [B]T/[AA]T, K1, and K2. Fig. 2
shows numerical results for [AA�B]/[AA]T (a) and [AA�B2]/[AA]T

(b) as a function of K1[B]T, for several [B]T/[AA]T and K2 = K1.
First, we see that the numerical solutions for [B]T/[AA]T = 100
(yellow triangles and lines) are close to Hunter and Anderson’s
predictions [eqn (D1) and (D2)], indicated by thick grey solid
lines. For [B]T/[AA]T = 100 and K1[B]T = 103, we evaluated that
[B] = 0.98[B]T; hence, the assumption [B] = [B]T of ref. 20 is
satisfied to a high degree at this [B]T/[AA]T value. Second, the
numerical results for [B]T/[AA]T = 0.2 (purple diamonds) are
close to Perelson and DeLisi’s predictions eqn (E4) and (E5)
(purple dashed lines). Yet, we observe tiny differences between
the numerical predictions and eqn (E4) around K1[B]T = 1 in
panel (a). This observation reinforces our analytical insight of
Appendix E, namely, that eqn (E4) and (E5) contain errors of O([B]T

3/
[AA]T

3). For [B]T/[AA]T = 0.2 and K1[B]T = 103, we evaluated that
[AA] = 0.81[AA]T; hence, the assumption [AA] = [AA]T of ref. 27 is
satisfied to some extend at this [B]T/[AA]T value. Comparing to
our earlier evaluation of [B] at [B]T/[AA]T = 100, we see that, as
anticipated in the introduction, the closer [B]T/[AA]T is to unity,
the stronger the unbound species are depleted. Third, a salient

feature of the curves in Fig. 2(a) are the plateaus for K1[B]T c 1
and [B]T E [AA]T. As we derive in Appendix C [specifically,
eqn (C3)], their height is set by

½AA � B�
½AA�T

¼ ½B�T½AA�T
1� ½B�T

2½AA�T

� �
þ O

1

K1½B�T

� �
: (7)

We indicate the predictions from eqn (7) with crosses in
Fig. 2(a). The plateau height in Fig. 2(a) is maximal for [B]T =
[AA]T, as also follows from eqn (7). Fourth, note that [AA�B]
cannot exceed the total concentrations of its constituents [AA]T

and [B]T; hence, 0 o [AA�B]/[AA]T o min(1,[B]T/[AA]T). Likewise,
for [AA�B2], we find that 0 o [AA�B2]/[AA]T o min(1,[B]T/
(2[AA]T)). The data in Fig. 2 satisfies these constraints.

Fig. 3 shows the occupancy y for K2/K1 = 1 (a) and K2/K1 = 100
(b) and other parameters as in Fig. 2. For [B]T/[AA]T = 100, we
again observe good agreement between Hunter and Anderson’s
expression [eqn (D3)] and the numerical data for y, both for

Fig. 2 Theoretical predictions for a dilution experiment, wherein [AA]T
and [B]T vary at fixed [B]T/[AA]T, K1, and K2. We show [AA�B]/[AA]T (a), [AA�
B2]/[AA]T (b) as a function of K1[B]T for K2/K1 = 1 and [B]T/[AA]T =
0.2,1,1.5,2.0 and 100. Also shown are approximations to [AA�B]/[AA]T and
[AA�B2]/[AA]T for [B]T c [AA]T [eqn (D1) and (D2)] and for [B]T { [AA]T
[eqn (E4) and (E5)]. Panel (a) shows the analytical predictions from eqn (7)
for K1[B]T c 1 with crosses.
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K2/K1 = 1 and K2/K1 = 100. Next, we see that increasing the
cooperativity parameter K2/K1 shifts y curves to smaller K1[B]T

values and that y switches from y E 0 to y E 1 over a narrower
K1[B]T range—the hallmark of cooperativity. To characterise the
slope of y, we numerically determined the Hill coefficient

nH �
@ log ðy=ð1� yÞÞ

@ log½B�T

���
½B��T

; (8)

where ½B��T is the molecular concentration at half occupancy,
yð½B��T Þ ¼ 1=2. Fig. 3(c) shows the K2/K1 dependence of nH for
several [B]T/[AA]T. As such, Fig. 3(c) generalises Fig. 6 of ref. 20,
where [B]T c [AA]T was considered. In that case, nH is given by

nH ¼ 2=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1=K2

p
þ 1Þ [cf. eqn (D4)], indicated in Fig. 3(c) with a

thick grey solid line. We see that, for [B]T/[AA]T = 100, the
numerically determined nH is close to predictions from
eqn (D4). Conversely, we see that nH - 0 for [B]T/[AA]T - 1.
Fig. 4(a) and (b) show that half occupancy (y = 1/2) is
not reached if [B]T/[AA]T o 1; hence, nH is undetermined for
[B]T/[AA]T o 1. The symbols in Fig. 3(c) for K2 = K1 represent the
analytical expression eqn (C8). These symbols match perfectly
to the numerical nH predictions.

3.2 Adding AA to a solution of B

Next, we study a case wherein [AA]T is varied at fixed [B]T, K1,
and K2. These conditions hold approximately in a titration
experiment wherein a concentrated solution of AA is added to
a dilute solution of B—provided that the ‘‘titrant’’ AA barely
affects the volume of the B-containing solution; hence, neither
affects [B]T. While eqn (6) could just as well be solved for a case
wherein [B]T decreases as [AA]T increases, for clarity, we prefer
to keep [B]T fixed here. Clearly, starting from [AA]T = 0 and
adding much AA, we can span the complete range of 0 o [B]T/
[AA]T o N. The expressions derived in Appendices D and E for
[B]T c [AA]T and [B]T { [AA]T can thus be expected to hold
either at the start or the end of this titration-like experiment.
Fig. 4 shows numerical results for [AA�B]/[B]T (a) and [AA�B2]/
[B]T [(b) and (c)] as a function of K1[AA]T for K2/K1 = 10 and
several K1[B]T [(a) and (b)] and for K1[B]T = 0.1 and several K2/K1

(c). These panels display a well-documented effect: given a
limited amount of B molecules, saturating a solution with AA
will make the doubly-bound complex AA�B2 rare compared to
its singly-bound counterpart AA�B, which is reflected in bell-
shaped [AA�B2]/[B]T curves.1,27 Intuitively, when the B molecules
have many AA ligands to choose from, it is unlikely that two Bs
will bind the same divalent ligand. However, for a very large
cooperativity parameter K2/K1, one would expect the doubly
bound complex AA�B2 to become more probable at a given
K1[AA]T. This is indeed observed in Fig. 4(c) for K2/K1 = 107.
There, once [AA]T 4 [B]T, the AA ligands bind every available B
molecule, and overwhelmingly so in doubly-bound AA�B2 com-
plexes. This means that there are half as many AA�B2 complexes
as B molecules, which explains the plateau value 0.5 in Fig. 4(c).
Yet, even for large K2/K1, saturating by AA will again drive
[AA�B2] down, for the same above-given reason. If, in a practical
application, the objective is to bind as many B as possible

(for instance to prevent a virus from attaching to a cell surface,
see Fig. 2 of ref. 8), using a divalent ligand with K2/K1 c 1 may
be successful. Beyond [AA]T E [B]T, there is no point in further
increasing [AA]T, as all B will be bound from thereon.

Fig. 3 The occupancy y for K2/K1 = 1 (a) and K2/K1 = 100 (b) and other
parameters as in Fig. 2. Panel (c) shows the Hill coefficient nH [eqn (8)] for
several [B]T/[AA]T 4 1 (lines) and predictions for K2 = K1 of the analytical
expression eqn (C8) (symbols). The thick grey lines represent eqn (D3)
[(a and b)] and eqn (D4) (c), corresponding to [B]T/[AA]T - N.
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An analytical expression [eqn (E5)] for bell-shaped [AA�B2]/[B]T

curves was found in ref. 27 under the assumption that [B]T {
[AA]T. From their expression followed that [AA�B2]/[B]T reaches a

maximal value maxð½AA � B2�=½B�T Þ ¼ 1=2þ 1=ðK2½B�T Þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2½B�T

p
=ðK2½B�T Þ at K1[AA]T = 1/2 and that [AA�B2]/[B]T

should be symmetric around this maximum when plotted against
log(K1[AA]T).27 For K2/K1 = 10 and K2[B]T = [0.1,1,10] as used in
Fig. 4(b), we find max([AA�B2]/[B]T) = [0.0857,0.268,0.410], which
are close to the peak values observed there. For K1[B]T = 0.1, we
see that eqn (E5) (grey lines) actually closely follows the numerical
data for all K1[AA]T considered. Conversely, for K1[B]T = [1,10],
the bell shape of [AA�B2]/[B]T becomes skewed and shifts away
from K1[AA]T = 1/2 to larger K1[AA]T. For these K1[B]T values, the
assumption [B]T { [AA]T is incorrect for small K1[AA]T.
For K1[AA]T = 1 and K1[B]T = 10, for example, one has that [B]T/
[AA]T = 10, so the assumption [B]T { [AA]T underlying eqn (E5) is
not justified. For these K1[AA]T and K1[B]T values, it makes more
sense to compare the numerical data to eqn (D2), which was
derived under the opposite assumption [B]T c [AA]T. Indeed, in
the regime of small K1[AA]T, the numerical data in Fig. 4(b) is
accurately described by eqn (D2) (black dashed lines). Hence, as
the ratio [B]T/[AA]T varies during a titration experiment, the
analytical expressions for [AA�B]/[B]T and [AA�B2]/[B]T for different
[B]T/[AA]T limits hold in different K1[AA]T-regimes. Similar obser-
vations can be made in Fig. 4(a) and (c). For instance, we see that
[AA�B]/[B]T is decently described by eqn (E4) for K1[B]T = 0.1 and
all considered K1[AA]T. Conversely, for K1[B]T = [1,10], we see that
[AA�B]/[B]T is described by eqn (D1) for small K1[AA]T and by
eqn (E4) for large K1[AA]T. Similar to [AA�B2]/[AA]T, also [AA�B]/
[AA]T shifts towards larger K1[AA]T for larger K1[B]T.

3.3 Adding B to a solution of AA

Lastly, we mimic a titration experiment wherein [B]T is varied at
fixed [AA]T, K1, and K2. As our governing eqn (2) and (3) are not
invariant under swapping AA and B—unlike, for example, A and
B in the reaction A + B " AB, see ref. 3—we can expect results
different from the previous subsection, wherein [AA]T was
varied at fixed [B]T, K1, and K2. Fig. 5 shows [AA�B]/[AA]T

(a) and [AA�B2]/[AA]T (b) as a function of K1[B]T for K2/K1 = 10
and various K1[AA]T. Compared to adding AA to a solution of B
discussed before, we see that qualitative features of [AA�B] and
[AA�B2]—sigmoidal and bell shapes—have interchanged. Intui-
tively, in a solution saturated with B molecules, AA ligands are
likely to find two binding partners, yielding high [AA�B2]. Both
[AA�B]/[AA]T and [AA�B2]/[AA]T shift towards larger K1[B]T for
larger K1[AA]T. As in Fig. 4, in Fig. 5 we also show predictions
from eqn (D1) and (D2) (black dashed lines) and eqn (E4) and
(E5) (grey solid lines). These analytical expressions are again
seen to agree fairly well with the numerical results for [AA�B]/
[AA]T and [AA�B2]/[AA]T, in this case either for large or small
K1[B]T. Unlike Fig. 4, where eqn (D1) and (D2) depend on K1[B]T,
eqn (D1) and (D2) in Fig. 5 are independent of K1[AA]T.

4 Conclusion

We have described the reversible binding of two identical
monovalent molecules B to a divalent ligand AA. The same
process has been studied before, but only in concentration

Fig. 4 Theoretical predictions for a titration-like experiment wherein
[AA]T increases at fixed K1, K2, and [B]T. We show [AA�B]/[B]T (a) and
[AA�B2]/[B]T [(b and c)] as a function of K1[AA]T for K2/K1 = 10 and several
K1[B]T [(a and b)] and for K1[B]T = 0.1 and several K2/K1 (c). Panel (a) also
shows eqn (E4) (grey lines) and eqn (D1) (grey dashed lines); panels
(b and c) also show eqn (E5) (grey solid lines) and eqn (D2) (black dashed lines).
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limits of either many more divalent ligands than monovalent
molecules or vice versa. We considered any ratio of concentrations
of divalent ligands and monovalent molecules instead. Our theo-
retical work is rooted in the classical reaction-rate equations for
the above reaction. At steady state, these reduce to four coupled
equations for the concentrations [AA], [B], [AA�B], and [AA�B2] of
unbound, partly bound, and fully bound molecule-ligand com-
plexes, with dependence on the four parameters K1, K2, [AA]T, and
[B]T. We have highlighted the role played by the different para-
meters by mimicking three different experiments wherein we
either varied [AA]T and [B]T at fixed [B]T/[AA]T, varied [AA]T at fixed
[B]T, or varied [B]T at fixed [AA]T. In these different scenarios, the
concentrations [AA�B] and [AA�B2] exhibit a rich and nontrivial
dependence on K1[B]T (or K1[AA]T), K2/K1, and [B]T/[AA]T. Specifi-
cally, curves for [AA�B] and [AA�B2] as a function of K1[AA]T or
K1[B]T are either sigmoidal or (roughly) bell shaped. Which of these
two shapes appears depends on the varied parameters and on the
values of the fixed parameters. In one case [Fig. 2(a)], we
observed a transition from a sigmoidal to a bell shape with

increasing [B]T/[AA]T. Only in the limits [B]T/[AA]T -N and [B]T/
[AA]T - 0 do we recover the results of [Hunter and Anderson,
Angewandte Chemie International Edition, 2009, 48, 7488] and of
[Perelson and DeLisi, Mathematical Biosciences, 1980, 48, 71]; at
finite [B]T/[AA]T, their results contain errors of O([AA]T/[B]T) and
O([B]T

3/[AA]T
3), respectively.

Comparable concentrations of reacting species can occur
both in in vivo and in synthetic biological systems. The constraint
of particle conservation in homodivalent ligand-monovalent
molecule binding—described in this article—can be especially
relevant in cellular contexts, where few molecules of either
species may be present. However, for tiny systems with small
numbers of particles, the reaction rate equation-type modelling
that underlies our results breaks down. Our results could then be
used as a benchmark in more accurate stochastic models for
the same reaction35 or in models that account for molecular
crowding.36 Our work can also be a stepping stone to study
how different protein-to-ligand ratios affect heterodivalent
interactions15,37–39 and the competition between monovalent
and divalent receptors for divalent ligands.31,40

Conflicts of interest

There are no conflicts to declare.

A Derivation of eqn (3) from
reaction-rate equations

We repeat eqn (1)

AAþ 2BÐ
k1

k�1
AA � Bþ BÐ

k2

k�2
AA � B2; (A1)

where now k1 and k2 and k�1 and k�2 are forward and backward
reaction rates, respectively. From the law of mass action follow
the reaction-rate equations,

d½AA�
dt

¼ k�1½AA � B� � 2k1½AA�½B�; (A2a)

d½B�
dt
¼ k�1½AA � B� � 2k1½AA�½B�; (A2b)

d½AA � B�
dt

¼ � k�1½AA � B� þ 2k1½AA�½B�

� k2½AA � B�½B� þ 2k�2½AA � B2�;
(A2c)

d½AA � B2�
dt

¼ k2½AA � B�½B� � 2k�2½AA � B2�; (A2d)

which need to be supplement with initial concentrations of the
four species, which we choose as

[AA](t = 0) � [AA]T, (A3a)

[B](t = 0) � [B]T, (A3b)

[AA�B](t = 0) = 0, (A3c)

[AA�B2](t = 0) = 0. (A3d)

Fig. 5 Theoretical predictions for a titration-like experiment wherein [B]T
increases at fixed K1, K2, and [AA]T. We show [AA�B]/[AA]T (a) and [AA�B2]/
[AA]T (b) as a function of K1[B]T for K2/K1 = 10 and several K1[AA]T. Panel (a)
also shows eqn (E4) (grey solid lines) and eqn (D1) (black dashed line); panel
(b) also shows eqn (E5) (grey solid lines) and eqn (D2) (black dashed line).
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Time-dependent concentrations were studied in ref. 14. Here,
we study the steady state, for which eqn (A2a) and (A2b) are
identical and eqn (A2c) is the sum of eqn (A2a) and (A2d).
Writing K1 = k1/k�1 and K2 = k2/k�2, we arrive at eqn (3) of the
main text.

B General solution to eqn (6)

From hereon, we use the following dimensionless parameters:
dimensionless concentrations x1 = [AA]/[AA]T, x2 = [B]/[AA]T,
x3 = [AA�B]/[AA]T and x4 = [AA�B2]/[AA]T; dimensionless association
constants (or, equivalently, ‘‘normalized concentration’’ scales20)
k1 = K1[B]T and k2 = K2[B]T; the ligand-to-molecule ratio x = [B]T/
[AA]T, and the ‘‘cooperativity parameter’’ a = K2/K1. Using these
definitions, we rewrite eqn (2) and (3) to

1 = x1 + x3 + x4, (B1a)

x = x2 + x3 + 2x4, (B1b)

x3 = 2k1x
�1x2x1, (B1c)

x4 ¼
1

2
k2x�1x2x3; (B1d)

Eqn (4) to

x3 = 2k1x
�1(x � x3 � 2x4)(1 � x3 � x4), (B2a)

x4 ¼
1

2
k2x�1 x� x3 � 2x4ð Þx3; (B2b)

Eqn (5) to

x4 ¼
k2x3 x� x3ð Þ
2ðxþ k2x3Þ

; (B3)

and eqn (6) to

ax3
3 + bx3

2 + cx3 + d = 0,

a � k1k2 � k2
2,

b � 2x(k1 � k2) � 2k1k2,

c � 2xk1(k2 � 1) � x2(2k1 + k1k2+ 1),

d � 2x2k1. (B4)

Substituting x3 = u � a/3 into eqn (B4) yields

u3 þ puþ q ¼ 0;

p � 3ac� b2

3a2
; q � 2b3 � 9abcþ 27a2d

27a3
;

(B5)

whose solution, with Viète’s formula, reads

uk ¼ 2

ffiffiffiffiffiffiffi
�p
3

r
cos

1

3
arccos

3q

2p

ffiffiffiffiffiffiffi
�3
p

s !
� 2pk

3

" #

for k ¼ 0; 1; 2:

(B6)

Depending on the values of k1,k2, and x, the determinant D =
�(4p3 + 27q2) can be both positive and negative. Hence, for

different parameter settings, eqn (6) has either three real roots
or one real and two complex roots.

C No cooperativity, a = K2/K1 = 1

In absence of cooperativity (K1 = K2) we have that k1 = k2� k and
eqn (B4) simplifies to

�2k2x3
2 + x[2k(k � 1) � x(k + 1)2]x3 + 2kx2 = 0.

(C1)

The positive solution to the quadratic eqn (C1) reads

x3 ¼
x
4k2

2kðk� 1Þ � xðkþ 1Þ2 þ kþ 1ð ÞX
� 	

; (C2a)

with

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kþ kxþ xÞ2 � 8k2x

q
: (C2b)

For the interpretation of the plateaus at k c 1 in Fig. 3(a), we
note that, for k c 1 and x E 1,

x3 = x(1 � x/2) + O(k�1). (C3)

Eqn (C3) breaks down for x 4 2, as x3 o 0 corresponds to
[AA�B] o 0, which is nonphysical.

Inserting eqn (C2) into x4 [eqn (B3)] and y � x3/2 + x4 yields

x4 ¼
1

8k2
ð2kþ kxþ xÞ2 � 4k2x� ð2kþ kxþ xÞX

2


 �
; (C4a)

y ¼ 1

2
þ xðkþ 1Þ

k
� X
4k
: (C4b)

We note that the case of K2/K1 = 1 considered here is related to
the simpler reaction A + B " A�B. Comparing two solutions
with equal concentrations of [AA] and [A], the number of
ligating units in the former solution is twice as high. Replacing
x - 2x in eqn (C4b) accordingly, this expression reduces to
eqn (4.38) of ref. 3 for the scaled concentration [A�B]/[A]T at a
ligand-to-molecule ratio x = [B]T/[A]T.

In terms of the dimensionless parameters, the Hill coeffi-
cient of eqn (8) can be expressed as

nH �
@ log ðy=ð1� yÞÞ

@ log k1

����
k�
1

; (C5)

where k�1 is such that yðk�1Þ ¼ 1=2; hence,

nH ¼
k�1

yð1� yÞ
@y
@k1

����
k�
1

¼ 4k�1
@y
@k1

����
k�
1

: (C6)

Inserting eqn (C4b), we find

k� ¼ x
x� 1

;
@y
@k

����
k�
¼ ðx� 1Þ2

2xð2x� 1Þ; (C7)

and

nH ¼
2ðx� 1Þ
2x� 1

: (C8)
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We find that lim
x!1

þ
k� ¼ 1; lim

x!1
þ
y ¼ 1=2; and lim

x!1
þ
nH ¼ 0. For

smaller x, the condition of half occupancy in the definition
of the Hill coefficient is never fulfilled, leaving nH undefined
for x r 1.

D Few divalent ligands [AA]T { [B]T
(n c 1)

For x c 1, eqn (B4) reduces to

� x3 2k1 þ k1k2 þ 1ð Þ þ 2k1 þ O x�1
� �

¼ 0

) x3 ¼
2k1

1þ 2k1 þ k1k2
þ O x�1

� �
:

(D1)

Inserting eqn (D1) into eqn (B3) and again taking x c 1,
we find

x4 ¼
k1k2

1þ 2k1 þ k1k2
þ O x�1

� �
: (D2)

The occupancy y is found as

y ¼ k1 þ k1k2
1þ 2k1 þ k1k2

þ O x�1
� �

: (D3)

Eqn (D1)–(D3) coincide with eqn (S20)–(S22) of ref. 20, which
were used to draw Fig. 4 therein.

For the case x c 1, we find nH in terms of the cooperativity
parameter a by inserting eqn (D3) into eqn (C6),

nH ¼
2
ffiffiffi
a
p

1þ
ffiffiffi
a
p : (D4)

E Many divalent ligands [AA]T c [B]T
(n { 1)

Next, we seek approximate solutions to eqn (B4) for x { 1. We

insert the power series x3 ¼
Pn
i¼0

aixi into eqn (B4), collect terms

of equal order in x, and demand the coefficient of each
successive order in x to be zero. For n = 3, we find

x3 ¼ x� k2 þ 1

2k1
x2 þ 2k22 þ 3k2 þ 1� 2k1ðk2 þ 1Þ

4k12
x3 þ Oðx4Þ:

(E1)

We insert eqn (E1) into eqn (B3) and find

x4 ¼
k2
4k1

x2 � k2
4k12

k2 � k1 �
k2 � 1

k2 þ 1


 �
x3 þ O x4

� �
: (E2)

Ref. 27 attacked the same problem differently. They stated that
[AA] = [AA]T holds approximately if [AA]T c [B]T. Then, the term
(1 � x3 � x4) in eqn (B2a), which stems from [AA] should be
replaced by 1, yielding

x3 = 2k1x
�1(x � x3 � 2x4), (E3)

instead. Inserting x4 [eqn (B3)] as before now yields

k2x32 þ xþ 2k1ð Þx3 � 2k1x ¼ 0

) x3 ¼
xþ 2k1
2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k1k2x
ðxþ 2k1Þ2

s
� 1

" #
;

(E4)

equivalent to eqn (19) of ref. 27.
We insert eqn (E4) into eqn (B3) and find

x4 ¼
ðxþ 2k1Þ2
8k1k2

1þ 4k1k2x
ðxþ 2k1Þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k1k2x
ðxþ 2k1Þ2

s" #
; (E5)

equivalent to eqn (20) of ref. 27.
As eqn (E4) and (E5) were derived setting x1 = 1, argued on

the basis of x { 1, the x-range of validity of these expression is
not obvious. Expanding eqn (E4) for small x,

x3 ¼ x� k2 þ 1

2k1
x2 þ 2k22 þ 3k2 þ 1

4k12
x3 þ Oðx4Þ; (E6)

we see that eqn (E1) and (E6) differ at O(x3). Practically, setting
k1 = k2 = 102, the two approximations eqn (E1) and (E6) differ
from the numerically found root by 0.0001% and 0.52% at
x = 0.1 and 0.5% and 50% at x = 1, respectively. As expected: for
small x, both approximations are decent and for x = 1, eqn (E1)
performs better.

Likewise, expanding eqn (E5) for small x yields

x4 ¼
k2
4k1

x2 � k2ðk2 þ 1Þ
4k 2

1

x3 þ O x4
� �

: (E7)

Again, differences between eqn (E2) and (E7) appear at O(x3).
Concluding, eqn (19) and (20) of ref. 27, contain errors of O(x3).

F Cubic equation for x2

In Section 2 and Appendix B, we reduced the original four
coupled equations in eqn (2) and (3) to a single cubic equation
for [AA�B] (or x3). This was a convenient choice for us as we
focused our discussion on [AA�B] and [AA�B2]. Yet, as we show
next, we may have also derived a cubic equation for [B] instead.
From eqn (B1a) and (B1b) we find

x1 = 1 � x3 � x4, (F1a)

x3 = x � x2 � 2x4. (F1b)

From eqn (F1a) and (B1d) we find

x4 ¼
1

2
k2x�1x2ðx� x2 � 2x4Þ (F2)

) x4 ¼
k2x2ðx� x2Þ
2ðxþ k2x2Þ

: (F3)

Inserting eqn (F1a) and (F1b) into eqn (B1c) we find

x � x2 � 2x4 = 2k1x
�1x2(1 � x3 � x4)

= 2k1x
�1x2(1 � x + x2 + x4). (F4)
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Inserting eqn (F3) gives

x� x2 �
k2x2ðx� x2Þ
xþ k2x2

¼ 2k1x�1x2 1� xþ x2 þ
k2x2ðx� x2Þ
2ðxþ k2x2Þ


 �
;

(F5)

which yields

0 = x2
3k1k2 + x2

2(2k1k2+ 2k1x� k2k1x) + x2(x2 + 2k1x� 2k1x
2)� x3,
(F6)

or, in our original notation,

0 = [B]3K1K2 + [B]2(2K1 � K2K1[B]0 + 2K1K2[AA]T)

+ [B](1 + 2K1[AA]T � 2K1[B]T) � [B]T. (F7)

Eqn (F7) is equivalent to eqn (25) of ref. 29—up to factor 2
discrepancies in a few places, which we trace back to her
eqn (15), the counterpart of our eqn (B1c) and (B1d), which
does not include prefactors 2 and 1/2. Redefining our K1 - K1/2
and K2 - 2K2 lifts these discrepancies. Moreover, eqn (F7)
is equivalent to eqn (S) of ref. 13 in the case that their
‘‘nonreactive fraction parameter’’ nr is set to nr = 0.
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34 B. R. Caré and H. A. Soula, BMC Syst. Biol., 2011, 5, 1–13.
35 D. T. Gillespie, J. Phys. Chem., 1977, 81, 2340–2361.
36 D. Gomez and S. Klumpp, Front. Phys., 2015, 3, 45.
37 G. Vauquelin, D. Hall and S. J. Charlton, Br. J. Pharmacol.,

2015, 172, 2300–2315.
38 A. Simonsen, R. Lippe, S. Christoforidis, J.-M. Gaullier,

A. Brech, J. Callaghan, B.-H. Toh, C. Murphy, M. Zerial
and H. Stenmark, Nature, 1998, 394, 494–498.

39 C. Raiborg, E. M. Wenzel, N. M. Pedersen, H. Olsvik, K. O.
Schink, S. W. Schultz, M. Vietri, V. Nisi, C. Bucci, A. Brech,
T. Johansen and H. Stenmark, Nature, 2015, 520, 234–238.

40 E. T. Mack, L. Cummings and R. Perez-Castillejos, Anal.
Bioanal. Chem., 2011, 399, 1641–1652.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
A

pr
il 

20
21

. D
ow

nl
oa

de
d 

on
 1

0/
28

/2
02

4 
8:

19
:4

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D1SM00070E



