Issue 14, 2021

Interaction of proteins with phase boundaries in aqueous two-phase systems under electric fields

Abstract

The electric-field driven transport of proteins across the liquid–liquid interface in an aqueous two-phase system (ATPS) is studied in a microfluidic device using fluorescence microscopy. An ATPS containing polyethylene glycol (PEG) and dextran is employed, and bovine serum albumin (BSA) and bovine γ-globulins (BγG) are considered as model proteins. It is shown that both proteins, initially in the dextran-rich phase, accumulate at the liquid–liquid interface, preferably close to the three-phase contact line between the two liquid phases and the microchannel wall. It is in these regions where the proteins penetrate into the PEG-rich phase. The transport resistance of the liquid–liquid interface is higher for BγG than for BSA, such that a much larger molar flux of BSA into the PEG phase is observed. This opens up the opportunity of separating different protein species by utilizing differences in the transport resistance at the interface. A mathematical model is developed, accounting for adsorption and desorption processes at the liquid–liquid interface. The underlying theoretical concept is that of an electrostatic potential minimum formed by superposing the applied electric field and the field due to the Donnan potential at the interface. A fit of the model parameters to the experimental data results in good agreement between theory and experiments, thereby corroborating the underlying picture.

Graphical abstract: Interaction of proteins with phase boundaries in aqueous two-phase systems under electric fields

Article information

Article type
Paper
Submitted
28 Oct 2020
Accepted
04 Mar 2021
First published
05 Mar 2021

Soft Matter, 2021,17, 3929-3936

Interaction of proteins with phase boundaries in aqueous two-phase systems under electric fields

F. Gebhard, J. Hartmann and S. Hardt, Soft Matter, 2021, 17, 3929 DOI: 10.1039/D0SM01921F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements