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machine learning potentials to
experimental free energy data: predicting tautomer
ratios in solution†

Marcus Wieder, *a Josh Fass ‡*ab and John D. Chodera a

The computation of tautomer ratios of druglike molecules is enormously important in computer-aided drug

discovery, as over a quarter of all approved drugs can populate multiple tautomeric species in solution.

Unfortunately, accurate calculations of aqueous tautomer ratios—the degree to which these species must

be penalized in order to correctly account for tautomers in modeling binding for computer-aided drug

discovery—is surprisingly difficult. While quantum chemical approaches to computing aqueous tautomer

ratios using continuum solvent models and rigid-rotor harmonic-oscillator thermochemistry are currently

state of the art, these methods are still surprisingly inaccurate despite their enormous computational

expense. Here, we show that a major source of this inaccuracy lies in the breakdown of the standard

approach to accounting for quantum chemical thermochemistry using rigid rotor harmonic oscillator

(RRHO) approximations, which are frustrated by the complex conformational landscape introduced by the

migration of double bonds, creation of stereocenters, and introduction of multiple conformations separated

by low energetic barriers induced by migration of a single proton. Using quantum machine learning (QML)

methods that allow us to compute potential energies with quantum chemical accuracy at a fraction of the

cost, we show how rigorous relative alchemical free energy calculations can be used to compute tautomer

ratios in vacuum free from the limitations introduced by RRHO approximations. Furthermore, since the

parameters of QML methods are tunable, we show how we can train these models to correct limitations in

the underlying learned quantum chemical potential energy surface using free energies, enabling these

methods to learn to generalize tautomer free energies across a broader range of predictions.
Introduction

The most common form of tautomerism, prototropic tautomerism
describes the reversible structural isomerism involving the
sequential processes of bond cleavage, skeletal bond migration
and bond reformation in which a hydrogen is transferred.1

Numerous chemical groups can show prototropic tautomerism.
Common examples include keto–enol (shown in Fig. 2), amide/
imidic acid, lactam/lactim, and amine/imine tautomerism.2
Tautomerism inuences many aspects of chemistry and
biology

Tautomerism adds a level of mutability to the static picture of
chemical compounds. The change in the chemical structure
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between different tautomeric forms of a molecule is accom-
panied by changes in physico-chemical properties. By virtue of
the movement of a single proton and the rearrangement of
double bonds, tautomerism can signicantly alter a mole-
cule's polarity, hydrogen bonding pattern, its role in
nucleophilic/electrophilic reactions, and a wide variety of
physical properties such as partition coefficients, solubilities,
and pKa.3,4

Tautomerism can also alter molecular recognition, making it
an important consideration for supramolecular chemistry. To
optimizing hydrogen bond patterns between a ligand and
a binding site tautomerism has to be considered. In a theoret-
ical study of all synthetic, oral drugs approved and/or marketed
since 1937, it has been found that 26% exist as an average of
three tautomers.5 While tautomerism remains an important
phenomena in organic chemistry, it has not gained much
appreciation in other scientic elds.

The typical small free energy difference between tautomers
poses additional challenges for protein-ligand recognition.
Local charged or polar groups in the protein binding pocket can
shi the tautomer ratio and result in dominant tautomers in
complex otherwise not present in solution.6 For this reason the
elucidation of the dominant tautomer in each environment is
© 2021 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d1sc01185e&domain=pdf&date_stamp=2021-08-31
http://orcid.org/0000-0003-2631-8415
http://orcid.org/0000-0003-3719-266X
http://orcid.org/0000-0003-0542-119X
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D1SC01185E
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC012034


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ju

ly
 2

02
1.

 D
ow

nl
oa

de
d 

on
 7

/2
3/

20
24

 5
:2

2:
10

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
not enough—without the knowledge about the ratio (i.e. the free
energy difference) between tautomeric forms in the corre-
sponding phase a correct description of the experimental (i.e.
macroscopic) binding affinity might not be possible. To illus-
trate this, one might think about two extreme cases: one in
which the tautomeric free energy difference in solution is
10 kcal mol�1 and one in which it is 1.0 kcal mol�1. It seems
unlikely that the free energy difference of 10 kcal mol�1 will be
compensated by the protein binding event (therefore one could
ignore the unlikely other tautomer form), but a tautomeric free
energy difference of 1 kcal mol�1 could easily be compensated.
Examples for this effect—changing tautomer ratios between
environments—are numerous for vacuum and solvent phase.
One example is the neutral 2-hydroxypyridine (2-HPY)/2-
pyridone (2-PY) tautomer. The gas phase internal energy
difference between the two tautomers is �0.7 kcal mol�1 in
favor of the enol form (2-HPY), while in water an internal energy
difference of 2.8 kcal mol�1 was reported in favour of 2-PY. In
cyclohexane, both tautomer coexist in comparable concentra-
tion while the 2-PY is dominant in solid state and polar
solvents.7

The example above assumed two tautomeric forms—if there
were multiple tautomeric forms, each with small free energy
differences, using a single dominant tautomer in solvent and
complex may still represent only a minor fraction of the true
equilibrium tautomer distribution.
Fig. 1 Tautomeric free energy differences in solution are typically calcu
that is used to obtain the individual terms. A typical quantum chemistry pr
the free energy in gas phase (G*

gas; calculated using the ideal gas RRHO
obtained using a continuum solvation model). The tautomeric free ene
between G

�
solv for two tautomers.

© 2021 The Author(s). Published by the Royal Society of Chemistry
The study of tautomer ratios requires sophisticated
experimental and computational approaches

The experimental study of tautomer ratios is highly chal-
lenging.8 The small free energy difference and low reaction
barrier between tautomers—as well as their short interconver-
sion time—can make it nearly impossible to study specic
tautomers in isolation. Recently, efforts have been made to
collect some of the experimental data and curate these in
publicly available databases, specically Wahl and Sander9 and
Dhaked et al.10

In the absence of a reliable, cheap, and fast experimental
protocol to characterize tautomeric ratios for molecules, there is
a need for computational methods to ll the gap. And—even if
such a method exists—predicting tautomer ratios of molecules
that are not yet synthesized motivates the development of
theoretical models. Computational methods themselves have
a great need for dened tautomer ratios. Most computational
methods use data structures in which bond types and/or
hydrogen positions have to be assigned a priori and remain
static during the calculation, introducing signicant errors if an
incorrect dominant tautomer is chosen.11

The third round of the Statistical Assessment of the
Modeling of Proteins and Ligands (SAMPL2) challenge included
the blind prediction of tautomer ratios and provided an inter-
esting comparison between different computational methods.12

Most of the 20 submissions were using implicit solvent models
lated using a thermodynamic cycle, independent of the level of theory
otocol calculates the free energy in aqueous phase ðG�

solvÞ as the sum of
approximation) and the standard state transfer free energy (DG*/+

S ;
rgy difference in solution DtG

�
solv is then calculated as the difference

Chem. Sci., 2021, 12, 11364–11381 | 11365
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and ab initio or DFT methods in combination with a thermo-
dynamic cycle (as shown in Fig. 1) to evaluate tautomeric free
energy difference.12 However, as stated in Martin,13 “In
summary, although quantum chemical calculations provide
much insight into the relative energies of tautomers, there
appears to be no consensus on the optimal method”. For the 20
tautomer pairs investigated in the SAMPL2 challenge (this
includes 13 tautomer pairs for which tautomer ratios were
provided beforehand) the three best performing methods re-
ported an root mean squared error (RMSE) of 2.0,14 2.5 (ref. 15)
and 2.9 kcal mol�1.16 While these results are impressive it also
shows that there is clearly room for improvement. And, maybe
even more importantly, the SAMPL2 challenge showed the need
for investigating a wider variety of tautomer transitions to draw
general conclusions about best practices and methods for
tautomer predictions.12 The excellent review of Nagy concluded
that tautomer relative free energies are sensitive to “the applied
level of theory, the basis set used both in geometry optimization
and [.] single point calculations, consideration of the thermal
corrections [.] and the way of calculating the relative solvation
free energy”.17 We'd like to add “quality of 3D coordinates” to
these issues and discuss them in the following.
Standard approaches to quantum chemical calculations of
tautomer ratios introduce signicant errors

The tautomeric free energy difference in solution DtG
�
solv can be

calculated from the standard-state Gibbs free energy in aqueous
Fig. 2 The rigid-rotor harmonic oscillator (RRHO) approach constructs a
at aminimummodelling all bonded terms as harmonic. The enol and keto
ol) is shown and the main conformational degrees of freedom highlig
approximation to the partition function can approximate the overall po
enumerated. The lower panel shows the probability density resulting
difference between the true and approximated probability density resu
modeled using a hindered/free rotor.

11366 | Chem. Sci., 2021, 12, 11364–11381
phase G
�
solv of the product and educt of the corresponding

tautomer reaction, which itself is calculated as the sum of the
gas-phase standard-state free energy G*

gas and the standard-state
transfer free energy DG*/�

S , shown as a thermodynamic cycle in
Fig. 1.

The standard-state Gibbs free energy is calculated using
a quantum chemistry estimate for the electronic energy and,
based on its potential energy surface, a statistical mechanics
approximation to estimate its thermodynamic properties. While
the accuracy of the electronic energy and the transfer free
energy DGS is dependent on the chosen method and can
introduce signicant errors in the following we want to
concentrate on the approximations made by the thermochem-
ical correction to obtain the gas phase free energy: the rigid
rotor harmonic oscillator (RRHO) approximation and the use of
single or multiple minimum conformations to generate
a discrete partition function (as written in eqn (1)). In the
following the standard-state of all the thermodynamic proper-
ties should be implied and will not be added to the notation.

A commonly used approach for the zero point energy (ZPE)
and thermal contributions is based on the ideal gas RRHO,
assuming that the molecule is basically rigid and its internal
motions comprise only vibrations of small amplitude where the
potential energy surface can be approximated as harmonic
around a local energy minimum. This assumption leads to an
analytical approximation that describes the local conguration
space around a single minimum based on the local curvature of
the potential energy surface (Fig. 2).18
partition function using the curvature of the potential energy landscape
form of amolecules (in the enol form: 1-(cyclohex-3-en-1-yl)ethen-1-
hted. The middle panel shows how the use of a local and harmonic
tential energy landscape, if all relevant minimum conformations are
from the harmonic approximations, with solid colored regions the
lting from anharmonicity and/or bonded terms that would better be

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Errors are introduced because the harmonic oscillator
approximation assumes that, for each normal mode, the
potential energy associated with the molecule's distortion from
the equilibrium geometry has a harmonic form. Especially low-
frequency torsional modes would be more appropriately treated
as hindered internal rotations at higher temperatures. This can
lead to a signicant underestimate of the congurational
entropy, ignoring the contributions of multiple energy wells.19

The correct treatment of such low-frequency modes in the
analytical rotational entropy part of the RRHO partition func-
tion can add considerable computational cost, since the
numerical solution requires the calculation of the full torsion
potential (periodicity and barrier heights).20

Another, related shortcoming of the RRHO approach is the
focus on a single minimum conformation. Assuming that the
correct global minimum has been identied this approach
ignores the congurational entropy of all other conformations
to the partition function. Methods like the ‘mining minima’
approach can help to mitigate this problem and construct
a partition function using local congurational integrals from
multiple minimum energy wells.19 The standard state free
energy G� of a molecule can then be calculated for each of the
minimum conformations k separately and combined as follows

G� ¼ �RT ln

 XN
k¼1

e�G
�
k=RT

!
(1)

to obtain a weighted free energy.21,22 The free energy obtained in
eqn (1) mitigates the shortcomings of the RRHO approach to
model torsions with periodicity of 1 since—as long as the
different minima of the torsion are generated as conforma-
tions—these are included in the sum over all conformations.
But the congurational integral is still restricted to the
minimum conformation and the contribution of its energy well,
ignoring anharmonicity in the bonded terms and contributions
from conformations outside the minimum energy wells.
Fig. 3 Alchemical relative free energy calculations with quantummachin
differences. Linearly interpolating between two potential energy functio
bridging distributions between the physical endstates representing the t
empty circle at each endstate—are included to facilitate this transformati
relative free energies of tautomer pairs in vacuum.

© 2021 The Author(s). Published by the Royal Society of Chemistry
Alchemical relative free energy calculations with machine
learning potentials can compute true tautomeric free energy
differences, including all classical statistical mechanical
effects

Limitations of the ideal gas RRHO approximation to the free
energy and ZPE correction, challenges in enumeration of local
minimum conformations, and the consistent treatment of
internal/external rotational symmetry, as well as approxima-
tions in the continuum solvent model can lead to errors in the
free energy that are difficult to detect and correct. The use of
molecular dynamics (MD) simulations, explicit solvent mole-
cules, and a rigorous classical treatment of nuclear motion to
sample independent conformations from an equilibrium
distribution can overcome the above mentioned challenges. To
describe tautomer free energies in solution this would require
computationally prohibitive MM/QM calculations in which the
molecule of interest is treated quantum mechanically (QM) and
the solute treated using a molecular mechanics (MM)
description.

One of the most exciting developments in recent years has
been the introduction of fast, efficient, accurate and transferable
quantum machine learning (QML) potentials (e.g. ANI,23 Phys-
Net,24 and SchNet25) to model organic molecules. QML potentials
can be used to compute QM-based Hamiltonians and—given
sufficient and appropriate training data—are able to reproduce
electronic energies and forces without loss of accuracy but with
orders of magnitude less computational cost than the QM
methods they aim to reproduce. QML potentials have been
successfully applied to molecular dynamics and Monte Carlo
(MC) simulations.26 Here, we present the application of
a machine learning potential for the calculation of alchemical
free energies for tautomer pairs in the gas phase (Fig. 3).

We begin by investigating the accuracy of a current, state of
the art approach to calculate tautomer ratios on a set of 468
tautomer pairs selected from the publicly available Tautobase
e learning (QML) potentials like ANI can rigorously compute free energy
ns using the alchemical coupling parameter l enables the sampling of
wo tautomers. Here, noninteracting dummy atoms—indicated by the
on. In this work, we present the application of this concept to calculate

Chem. Sci., 2021, 12, 11364–11381 | 11367
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dataset9 spanning different tautomer reactions, number of
atoms and functional groups. We are using a popular DFT
functional (B3LYP) and basis sets (aug-cc-pVTZ and 6-
31G(d))27–31 for the calculation of the electronic energy and
a continuum solvation model (SMD32) to model the transfer free
energy.

Furthermore we are investigating the effect of a more
rigorous statistical mechanics treatment of the gas phase free
energies. To investigate this effect we calculate tautomeric free
energy difference in vacuum DtG

calc
vac using (1) alchemical relative

free energy calculations and (2) multiple minimum conforma-
tions in combination with the RRHO approximation (as used in
the quantum chemistry approach). To enable a direct compar-
ison between the two approaches we are using a QML potential
in both calculations.

Since we are interested in tautomeric free energy differences
in solution we investigate the possibility to optimize the QML
parameters to include crucial solvent effects. The framework we
have developed to perform alchemical relative free energy
calculations enables us to obtain a relative free energy estimate
that can be optimized with respect to the QML parameters. We
are using a small training set of experimentally obtained
tautomer free energies in solution DtG

exp
solv and importance

sampling to obtain reweighted DtGcalc
vac/solv with the optimized

parameters.
Fig. 4 State of the art quantum chemistry calculations are able to c
3.1 kcal mol�1. The direction of the tautomer reaction is chosen so that th
always positive. Panel (A) shows DtG

calc
solv as the difference between the

tautomer pair plotted against the experimental tautomeric free energy
phase geometry optimization and single point energy calculation, the idea
The transfer free energy is calculated on B3LYP/aug-cc-pVTZ/SMD optim
(x-axis entries positive, y-axis entries negative) indicate calculations that
Gcalc
solv and DtG

exp
solv). The dashed line indicates the ideal behavior of the calc

interval. Red dots indicate tautomer pairs with more than 10 kcal mol�1

separately shown in Table S.I.1.† In panel (B), the top panel shows the kern
line indicates zero free energy difference (equipopulated free energies
DtG

calc
solv is shown. MAE and RMSE are reported in units of kcal mol�1. Quan

Leibler divergence (KL) was calculated using KL(DtG
exp
solvkDtG

calc
solv).

11368 | Chem. Sci., 2021, 12, 11364–11381
Here we report the rst large scale investigation of tautomer
ratios using quantum chemical calculations and machine
learning potentials in combination with alchemical relative free
energy calculations spanning a large chemical space and
DtG

exp
solv values.

Standard quantum chemistry methods predict tautomer
ratios with an RMSE of 3.1 kcal mol�1 for a large set of
tautomer pairs

Calculating tautomeric free energy differences in solution
DtG

calc
solv is a challenging task since its success depends on a highly

accurate estimate of both the intrinsic free energy difference
between tautomer pairs as well as the transfer free energy.

We calculated the tautomeric free energy difference
DtG

calc
solv for 468 tautomer pairs (460 if the basis set 6-31G(d) was

used) and compared the results with the experimentally ob-
tained tautomer ratios in solution (expressed as free energy
difference in solution DtG

exp
solv) in Fig. 4.

Three quantum chemistry approaches were used to calculate
these values:

� B3LYP/aug-cc-pVTZ/B3LYP/aug-cc-pVTZ/SMD. Multiple
conformations were generated for each tautomer, geometry
optimization and energy calculations were performed with
B3LYP/aug-cc-pVTZ in gas phase and solution (using the SMD
continuum solvation model) and DtG

calc
solv was calculated as the
alculate tautomeric free energy differences DtG
calc
solv with a RMSE of

e experimentally obtained tautomeric free energy difference DtG
exp
solv is

sum of the gas phase free energy and transfer free energy for each
difference in solution DtG

exp
solv. B3LYP/aug-cc-pVTZ is used for the gas

l gas RRHO approximation is used to calculate the thermal corrections.
ized geometries using B3LYP/6-31G(d) and SMD. Values in quadrant II
assigned the wrong dominant tautomer species (different sign of Dt-
ulated and experimental values, the grey lines mark the �1 kcal mol�1

absolute error between DtG
calc
solv and DtG

exp
solv. These tautomer pairs are

el density estimate (KDE) and histogram of DtG
calc
solv and DtG

exp
solv. The red

). In the lower panel the KDE of the difference between DtG
exp
solv and

tities in brackets [X;Y] denote 95% confidence intervals. The Kullback–

© 2021 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D1SC01185E


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ju

ly
 2

02
1.

 D
ow

nl
oa

de
d 

on
 7

/2
3/

20
24

 5
:2

2:
10

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
difference between the free energies in aqueous phase for the
individual tautomers. Transfer free energy was calculated using
B3LYP/aug-cc-pVTZ/SMD on the optimized geometries in solu-
tion. This approach will be abbreviated as B3LYP/aug-cc-pVTZ/
B3LYP/aug-cc-pVTZ/SMD in the following. The RMSE between
DtG

exp
solv and DtG

calc
solv for the dataset is 3.4 [3.0;3.7] kcal mol�1 (the

quantities [X;Y] denote a 95% condence interval).
� B3LYP/aug-cc-pVTZ/B3LYP/6-31G(d)/SMD. Multiple

conformations were generated for each tautomer, confor-
mations were optimizing with B3LYP/aug-cc-pVTZ in gas
phase and solution (using the SMD continuum solvation
model). Transfer free energy was calculated using B3LYP/6-
31G(d)/SMD on the optimized geometries in solution.
DtG

calc
solv was calculated as the difference between the free

energy in aqueous phase for the individual tautomers and
conformations. The RMSE between DtG

exp
solv and DtG

calc
solv for the

QM dataset is 3.1 [2.7; 3.4] kcal mol�1. This approach will be
subsequently called B3LYP/aug-cc-pVTZ/B3LYP/6-31G(d)/
SMD.

� B3LYP/aug-cc-pVTZ/SMD. Generating multiple conforma-
tions, optimizing with B3LYP/aug-cc-pVTZ in solution phase
(using the SMD solvation model) and calculating relative
solvation free energy DtG

calc
solv directly as the difference between

the free energy in aqueous phase (on the solution phase
geometry). In this case, the free energy in aqueous phase is not
obtained through a thermodynamic cycle, but the frequency
calculation and thermochemistry calculations are performed
with the continuum solvation model.33 The individual free
energy in aqueous phase Gcalc

solv,k for conformation k are averaged
to obtain the nal Gcalc

solv. The RMSE between DtG
exp
solv andDtG

calc
solv is

3.3 [3.0;3.7] kcal mol�1. This approach will be subsequently
called B3LYP/aug-cc-pVTZ/SMD.

The protocol used to obtain the results described above did
not explicitly account for changes in internal rotors (only
changes in the point group were considered). The results
including changes in internal rotors are shown in Fig. S.I.5.†
Including internal symmetry numbers did not improve the
results.

The following discussion will concentrate on the results
obtained with the best performing method (B3LYP/aug-cc-
pVTZ/B3LYP/6-31G(d)/SMD). The results for all other methods
are shown in the ESI Section in Fig. S.I.4.†

The tautomeric free energy difference in solution
DtG

calc
solv calculated with B3LYP/aug-cc-pVTZ/B3LYP/6-31G(d)/SMD

are shown in Fig. 4. The RMSE for the calculated values is 3.1
[2.7;3.4] kcal mol�1. Overall, the method tends to overestimate the
tautomeric free energy difference in solution, as can be seen from
Fig. 4B (lower panel). For 59 tautomer pairs (13% of the dataset)
the method was not able to correctly determine the dominant
tautomer species. For these 59 tautomer pairs the mean absolute
error (MAE) between predicted and experimental value was
2.9 kcal mol�1.

5 out of the 6 tautomer pairs with highest absolute error
(above 10 kcal mol�1) between experimental and calculated free
energy difference have common scaffolds (values andmolecules
shown in the ESI Table S.I.1†). tp_1668, 1669, 1670 are all based
on 5-iminopyrrolidin-2-one with either nitrogen, oxygen or
© 2021 The Author(s). Published by the Royal Society of Chemistry
sulfur on position 4 of the ring. tp_1559 and tp_853 both have
methoxyethylpiperidine as a common substructure.

For the three analogues based on 5-iminopyrrolidin-2-one, we
note that the experimental values are estimated results based on
a three-way tautomeric reaction.34 While this might point to the
unreliability of DtG

exp
solv, we can not draw any denitive conclusions

here without repeating the underlying experiment.
The best performing quantum chemistry method shows very
good retrospective performance on the SAMPL2 tautomer set

Some of the tautomer pairs deposited in the Tautobase dataset
were also part of the SAMPL2 challenge, specically 6 out of 8
tautomer pairs of the obscure dataset (using the notation of the
SAMPL2 challenge: 1A_1B, 2A_2B, 3A_3B, 4A_4B, 5A_5B, 6A_6B)
and 8 out of 12 tautomer pairs of the explanatory dataset (7A_7B,
10B_10C, 10D_10C, 12D_12C, 14D_14C, 15A_15B, 15A_15C,
15B_15C).12 Comparing these molecules with the results of the
SAMPL2 challenge—specically with the results of the 4 partici-
pants with the best overall performance (ref. 16, 35, 15 and 14)—
helps to assess the quality of the used approach. Arguably, the
selection of the best performing method in the section above
introduces a bias since themethods described subsequently have
only seen the tautomer data described in the SAMPL2 challenge.
This bias is difficult to quantify and correct, especially since some
of themethods described below have beenmodied to reproduce
the SAMPL2 explanatory tautomer set, but nevertheless we want
to point it out to the reader at this point.

Since all four mentioned participants employed different
methods, we will briey describe the best performing methods
of these publications for which results are shown in Table 1.
The references to the methods used below are not cited
explicitly, these can be found in the publications cited at the
beginning of the following paragraphs.

Klamt and Diedenhofen16 used BP86/TZVP DFT geometry
optimization in vacuum and the COSMO solvation model. Free
energy in solution was calculated from COSMO-BP86/TZVP
solvation energies and MP2/QZVPP gas-phase energies.
Thermal corrections (including ZPE) were obtained using BP86/
TZVP gas phase frequencies.

Ribeiro et al.15 calculated the free energy in solution as the
sum of the gas-phase free energy and the transfer free energy.
The gas phase free energy was calculated using M06-2X/MG3S
level of theory and the molecular geometries optimized with
the same method. The corresponding transfer free energy were
computed at the M06-2X/6-31G(d) level of theory with the M06-
2X/MG3S gas-phase geometries using the SM8, SM8AD, and
SMD continuum solvation models (Table 1 shows only the
results with SM8AD, which performed best).

Kast et al.14 optimized geometries in gas and solution phase
(using the polarizable continuum solvation model PCM) using
B3LYP/6-311++G(d,p). Energies were calculated with EC-RISM-
MP2/aug-cc-pVDZ on the optimized geometries in the corre-
sponding phase. The Lennard-Jones parameters of the general
Amber force eld (GAFF) were used.

Soteras et al.35 used the IEF-MST solvation model parame-
terized for HF/6-31G(G) to obtain transfer free energy values.
Chem. Sci., 2021, 12, 11364–11381 | 11369
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Table 1 Comparison between the results of this work and the SAMPL2 challenge. All values are given in kcal mol�1. The first part of the names in
the ‘name’ column refers to the tautomer pair naming convention from the SAMPL2 challenge and in brackets is the name as used in this work.
The calculations for Klamt and Diedenhofen16 were performed with MP2+vib-CT-BP-TZVP, for Ribeiro et al.15 with M06-2X/MG3S/M06-2X/6-
31G(d)/SM8AD, Kast et al.14 with MP2/aug-cc-pVDZ/EC-RISM/PSE-3, and Soteras et al.35 with MP2/CBS+[CCSD-MP2/6-31+G(d)](d)/IEF-MST/
HF/6-31G). On this subset the presented approach was the second best method based on the total RMSE. Bracketed quantities [X,Y] denote 95%
confidence intervals

Name
DtG

exp
solv

[kcal mol�1]

DtG
calc
solv [kcal mol�1] DtG

calc
solv [kcal mol�1] DtG

calc
solv [kcal mol�1] DtG

calc
solv [kcal mol�1] DtG

calc
solv [kcal mol�1]

This work 16 15 14 35

1A_1B (tp_982) �4.8 �4.7 �4.0 �3.0 �7.7 �4.6
2A_2B �6.1 �6.8 �5.7 �5.7 �9.7 �6.3
3A_3B (tp_999) �7.2 �8.4 �7.7 �6.7 �11.2 �7.7
4A_4B �4.8 �0.4 0.5 0.8 �4.6 0.6
5A_5B (tp_1614) �4.8 �4.7 �3.9 �4.4 �6.2 �5.6
6A_6B (tp_1005) �9.3 �11.4 �7.6 �9.7 �11.2 �10.0
RMSE 1.3 [0.7,1.7] 1.4 [0.6,2.1] 1.5 [0.4,2.3] 2.8 [2.0,3.5] 1.3 [0.3,2.1]
7A_7B (tp_141) 6.6 4.9 5.3 6.5 5.1 5.5
10B_10C (tp_1058) �2.9 �5.3 1.7 0.0 �2.8 2.2
10D_10C (tp_1059) �1.2 �1.7 3.8 2.6 �0.6 5.0
12D_12C (tp_1514) �1.8 �2.1 3.3 3.1 �0.8 3.0
14D_14C (tp_1072) 0.3 �1.6 1.9 0.8 0.2 4.0
15A_15B (tp_504) 0.9 6.1 �3.0 3.6 0.0 0.9
15A_15C (tp_505) �1.2 0.7 �0.8 2.3 �1.9 1.4
15B_15C (tp_506) �2.2 �5.0 1.8 �1.2 �1.9 0.5
RMSE 2.5 [1.5,3.6] 3.6 [2.5,4.5] 2.9 [1.8,3.8] 0.8 [0.5,1.1] 3.8 [2.5,4.9]
Total RMSE 2.2 [1.4,2.9] 2.9 [2.0,3.6] 2.4 [1.6,3.1] 1.9 [1.2,2.6] 3.0 [1.9,4.0]
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Gas phase free energy differences were obtained by MP2 basis
set extrapolation using the aug-cc-pVTZ basis set at MP2/6-
31+G(d) optimized geometries. Correlation effects were
computed from the CCSD-MP2/6-31+G(d) energy difference.

The approach used in this work (B3LYP/aug-cc-pVTZ/B3LYP/
6-31G(d)/SMD) performs well compared to the four approaches
described above. For the total set of investigated tautomer pairs
our approach has a RMSE of 2.2 [1.4,2.9] kcal mol�1, making it
the second best performing approach only outperformed by
Kast et al.14

The difference in RMSE between the explanatory and blind
dataset is noteworthy. Approaches that perform well on the
blind data set perform worse on the explanatory set and vice
versa. This is to a lesser extent also true for our chosen
approach—B3LYP/aug-cc-pVTZ/B3LYP/6-31G(d)/SMD performs
worse for the explanatory tautomer set (RMSE of 2.5
[1.5,3.6] kcal mol�1) than on the blind tautomer set (RMSE of
1.3 [0.7,1.7]), but in comparison with the other four approaches,
it is consistently the second best approach.

Interesting to note are the three tautomer pairs 15A_15B,
15A_15C and 15B_15C from the explanatory data set. The
absolute error for these three pairs are 5.24, 1.9, and
2.8 kcal mol�1, respectively. It appears that the used approach
has difficulty to model 15B correctly, showing larger than
average absolute errors whenever 15B is part of the tautomer
reaction. Most likely the hydroxyl group in 15B is critically
positioned and sensitive to partial solvent shielding by the
phenyl ring, something that has been noted before.14

The discrepancy between the different approaches (ours
included) for the tautomer set shows that it seems highly
difficult to propose a single method for different tautomer pairs
that performs consistently with a RMSE below 2.0 kcal mol�1.
11370 | Chem. Sci., 2021, 12, 11364–11381
This issue is made substantially worse by the many different
ways methods can be used/combined and errors can be
propagated/compensated during tautomeric free energy differ-
ence DtG

calc
solv calculations. While we believe that a RMSE of

3.1 kcal mol�1 is a good value for the chosen approach, espe-
cially when compared to the results of the SAMPL2 challenge, it
is by far not a satisfying result. The accuracy, compared to the
cost of the approach, is not justiable and there is still a dire
need for more accurate and cheaper methods to obtain relative
solvation free energies for tautomer pairs.

With this we close the investigation of the state of the art QM
free energy calculations and will investigate some of the short-
comings of the RRHO thermochemistry calculations. Some of
the insight gained above could have been concluded from the
work of Kast et al.,14 Ribeiro et al.,15 Klamt and Diedenhofen,16

Soteras et al.,35 but the small number of chemical species
investigated there and the oen contradicting results reported
elsewhere (e.g. ref. 36 and 37) made a closer investigation of QM
free energy calculations for a large dataset necessary. The re-
ported results will be of importance for further method devel-
opment for tautomeric free energies.
Including multiple minimum conformations seems to have
little effect on the accuracy of tautomer free energies

The three approaches described above consider multiple
conformations to obtain the tautomeric free energy difference
DtG

calc
solv. Obtaining the global minimum conformation is an

important and well established task in quantum chemistry
calculations. Fig. S.I.6† shows the difference between the
highest and lowest free energy for an optimized minimum
conformation for the individual tautomers of the dataset
© 2021 The Author(s). Published by the Royal Society of Chemistry
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generated with B3LYP/aug-cc-pVTZ. While many of the tauto-
mers have only a single minimum conformation (278 out of 936
tautomers), for molecules with multiple minimum conforma-
tions the difference in the free energy emphasizes the need and
justies the cost for a global minimum conformation search.
Molecules with more than 10 kcal mol�1 difference between
highest and lowest energy minimum are shown in Fig. S.I.6.†

While the scientic community agrees on the importance of
the global minimum for property calculations, the importance
of considering multiple conformations for quantum chemistry
free energy calculations has not been well established (e.g. ref.
38). Using multiple minimum energy conformations can add
substantial computational cost to the free energy calculations.
Oen, the global minimum conformation search can be per-
formed with a lower level of theory than the single point energy
calculation, making only a single high level electronic energy
calculation necessary. Frequency calculations can also add
considerably to the computational cost of the free energy
calculation. If a single, minimum energy conformation is
sufficient to obtain a good estimate for the free energy in gas
phase substantial amount of computational time could be
saved.

Fig. 6 compares the tautomeric free energy difference ob-
tained using the weighted average over multiple minimum
conformations and the single global minimum conformation.
The results indicate that using multiple minimum conforma-
tions does not signicantly improve the nal result compared to
using a single, global minimum structure. Only 12 tautomer
pairs show an absolute deviation larger than 1 kcal mol�1 in the
Fig. 5 Computed free energies are highly sensitive to the selected
minimum conformation. For each molecule, the number of minimum
conformations Nconf is plotted against the difference between the
corresponding highest and lowest obtained free energy value for the
minimum conformations. 278 out of 936 molecules have only a single
minimum; molecules with multiple minima show substantial free
energy differences between theminimum conformations, highlighting
the need for a global minimum search.

© 2021 The Author(s). Published by the Royal Society of Chemistry
tautomeric free energy difference DtG
calc
solv between the two

approaches. Much more relevant than including multiple
conformations is locating the global minimum conformation
(as clearly shown by Fig. 5).

Alchemical relative free energy calculations with quantum
machine learning potentials can rigorously capture classical
statistical mechanical effects

Previous work using QML potential for free energy calculations
have focused on hybrid QML/MM simulations wherein ligand
interactions are treated with ML and the environment and
ligand–environment interactions with MM.39,40 To our knowl-
edge, this is the rst time alchemical free energy calculations
have been performed using purely a QML potential for drug-like
molecules.

Alchemical relative free energy calculations were performed
for 354 tautomer pairs using 11 alchemical l states in vacuum.
In the following, we will compare the tautomeric free energy
difference obtained using alchemical relative free energy
calculations to the multiple minima, RRHO approximation
using the same potential energy function (ANI-1ccx) to assess
potential errors in the thermochemistry corrections. We will
also show how a small number of experimentally obtained
tautomer ratios in solution can be used to incorporate crucial
solvent effects and recover tautomer free energies in solution by
QML parameter optimization and importance weighting.

While ANI-1x was trained on energies/forces calculated with
uB97x/6-31G*(d), ANI-1ccx was retrained from the same level of
theory to include energies recalculated with coupled cluster
considering single, double, and perturbative triple excitations
(CCSD(T)) with an extrapolation to the complete basis set limit
(CBS).41 CCSD(T)/CBS is the gold standard for electronic energy
prediction and calculates thermochemical properties to within
the limit of chemical accuracy (e.g. ref. 42).

RRHO ANI-1ccx calculations show signicant deviations from
the alchemical relative free energy calculations

In the limit of innite sampling alchemical relative free energy
calculations approach the exact free energy difference.
Alchemical relative free energy calculations can be used to
quantify the error introduced by a discrete partition function in
the form of multiple minimum conformations and harmonic
treatment of all bonded terms (including torsions and internal
rotors)—if the same potential energy function is used for both
calculations. Such a comparison is especially useful for
quantum mechanics potentials which typically do not include
explicitly dened harmonic terms in their functional form (as is
the case with most classical force elds). It is important to
emphasize that what is quantied here is not the error that the
RRHO introduces for free energy calculations, but for relative
free energy calculations: the difference in the partition function
that results from the tautomerization. Typically, only a small
region of the molecule is affected by the tautomerization and
there is potential for error compensation.

Since the simulation time of the individual lambda states for
the alchemical relative free energy calculations were relatively
Chem. Sci., 2021, 12, 11364–11381 | 11371
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Fig. 6 A single, global minimum conformation can be used to calculate tautomeric free energy differences in solution without loss of accuracy.
These results are based on the calculations with B3LYP/aug-cc-pVTZ/B3LYP/6-31G(d)/SMD. (A) shows the tautomeric free energy difference
DtG

calc
solv obtained with multiple minima (m.m.) plotted against the global, single minimum (s.m.) tautomeric free energy difference DtG

calc
solv. (B)

shows the KDE and histogram of the difference between s.m. DtG
calc
solv and m.m. DtG

calc
solv. The comparison indicates that there is little benefit using

multiple minimum structures over a single, global minimum considering the high costs of the former. Comparing two estimated properties we
use root mean squared deviation (RMSD) and mean absolute deviation (MAD) instead of error.
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short (200 ps) we repeated the calculations multiple times (5)
with randomly seeded starting conformations and velocities to
detect systems for which the simulation time was clearly
insufficient. In the following we will only use systems that had
a standard deviation of less than 0.3 kcal mol�1 for 5 inde-
pendent alchemical free energy calculations. Applying this lter
resulted in the removal of 65 tautomer pairs for which the free
energy calculation had not converged.
Fig. 7 Independent of the level of theory, thermochemistry corrections i
is used for the calculation of tautomeric free energy differences in vacuu
single point energy calculations on multiple minimum conformations an
shows a scatter plot between the two approaches and (B) the KDE and h
shown in red on the alchemical relative free energy estimates, these w
Methods section). Comparing two estimated properties we use root mea
of RMSE/MAE.

11372 | Chem. Sci., 2021, 12, 11364–11381
Results shown in Fig. 7 indicate the average deviation that
every relative free energy calculation based on the RRHO
approximation introduces, regardless of the accuracy of the
actual potential to model electronic energies. The mean abso-
lute deviation of 0.9 kcal mol�1 should not be underestimated.
Results shown in Table 1 would be signicantly improved if an
error of 0.9 kcal mol�1 could be compensated by running
a protocol that samples the relevant conformational degrees of
freedom to obtain an exact partition function.
ntroduce a mean absolute deviation (MAD) of 0.9 kcal mol�1. ANI-1ccx
m DtG

calc
vac using alchemical relative free energy (AFE) calculations and

d thermochemistry corrections based on the RRHO approximation. (A)
istogram of the difference between the two approaches. Error bars are
ere obtained from the MBAR estimate of the relative free energy (see
n squared deviation (RMSD) andmean absolute deviation (MAD) instead

© 2021 The Author(s). Published by the Royal Society of Chemistry
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For 12 (out of 289) tautomer pairs the multiple minima
RRHO approximation deviated by more than 3 kcal mol�1

(molecules are shown in Fig. S.I.1†). Most of these molecules
have high conformational degrees of freedom and it seems
unlikely that a naive enumeration of relevant conformations
(e.g. with a conformer generator) will detect all of them—this
might contribute to the observed error. That is certainly true for
tp_113, 116, 565, 554, 403, 1674.
QML potentials can be optimized to reproduce experimental
tautomer ratios in solution

Since the alchemical free energy calculations were performed in
vacuum, a comparison with the experimental tautomeric free
energy difference DtG

exp
solv showed a high RMSE of 6.4

[5.9,6.8] kcal mol�1, as expected from the well-known impact of
solvation effects on tautomer ratios.37

In the following we want to investigate if thermodynamic
observable—in this specic case tautomer ratios—can be used
to retrain a neural net potential derived from QM calculations.
Further, we want to test how such an optimized parameter set
would perform on the original dataset used to train the neural
net potential and if it is possible to use the difference between
the energies of the original and optimized parameter set for
regularization.

Dening a loss function L as the error between the calculated
DtG(q)

calc
vac and experimental DtG

exp
solv free energies it is possible to

optimize the loss with respect to the neural net parameters q

dening the ANI potential. Using importance weighting, a new
free energy estimate DtGðq*Þcalcvac/solv can be calculated with the
optimized QML parameters (q*) using the modied potential
energy function without resampling the equilibrium distribu-
tions. To ensure that the quality of the neural net parameters
does not deteriorate beyond a reasonable threshold a regulari-
zation term was added that acts on the energy difference for
each snapshot calculated with the endstate potential energy
functions with the original and optimized parameter set (DE(q,
q*)). The regularization term was included in the molecular loss
function acting on the snapshots used for the free energy
calculation for the 212 tautomer pairs in the training set—in the
course of a single epoch DE(q, q*) is evaluated on a total of
699 600 snapshots (212 tautomer pairs � 11 lambda states �
300 conformations).

Initial results led to the introduction of scaling factors that
allows to slowly increase the contribution of the tautomeric free
energy difference in the loss function (and/or the regularization
term) during the training. The protocol is described in more
details in the Methods section.

It was possible to overt the parameters on the training set
within 50 epochs if no regularization term was used (training/
validation performance shown in Fig. S.I.7I and M†). Without
a regularization term the RMSE for DE(q, q*) on the training/
validation/test snapshots rises to 40–100 kcal mol�1. While
the training set performance improves the validation set
performance reaches a plateau around 2.2–2.6 kcal mol�1. The
red dotted line in Fig. S.I.7† top panels indicates the perfor-
mance of the reported results in Fig. 8, indicating that even
© 2021 The Author(s). Published by the Royal Society of Chemistry
without regularization this performance can not be improved
signicantly.

The results shown in Fig. 8 and S.I.7† indicate that there is
a trade off between the accuracy of the ANI-1ccx parameters on
its original training set (either directly shown in Fig. S.I.7† or
indirectly through DE(q, q*) in Fig. 8) and the improvement for
the prediction of tautomeric free energy differences. This is best
exemplied in the training/validation set performance shown in
Fig. S.I.7F and X.† For both training runs the scaling factor of
the regularization term was increased throughout the epochs,
shiing the focus from optimizing the free energy to keeping
DE(q, q*) as small as possible. In Fig. S.I.7X† the DE(q, q*) term
in the loss was kept constant throughout the rst 100 epochs
and then raised approximately tenfold during the next 50
epochs. Looking at the training/validation set performance it
becomes evident that starting with epoch 100 the initial trend
towards improved performance starts to reverse while the MAE
for DE(q, q*) decreases. Aer 400 epochs the MAE for DE(q, q*) is
near zero and there is no improvement in the free energy esti-
mate for the training/validation set. This indicates that the
parameter set approaches the same minimum that was occu-
pied before training started.

Whenever both weights and biases are trained for the QML
potential it oen takes a few hundred epochs before DE(q, q*)
approaches reasonable values (�2 kcal mol�1), shown e.g. in
Fig. S.I.7L, J, G, and A.† Similar behavior was observed even if
the learning rate for the biases was reduced to 1 � 10�6 as
shown in Fig. S.I.7T.† In some instances it was not possible to
converge and successfully minimize both terms of the loss
function in 400 epochs. One such case is shown in Fig. S.I.7E.†

In Fig. 8A the training/validation set performance of
a training run with 400 epochs is shown. Only weights were
optimized with a learning rate of 1 � 10�4, regularization was
used (the scaling factors are plotted in Fig. S.I.9†). Fig. 8B shows
the obtained free energy estimates DtGðq*Þcalcvac/solv with the best
performing parameter set (calculated on the validation set) on
an independent test set (71 tautomer pairs). The optimized
parameter set (q*) was able to improve the prediction of tauto-
meric free energies on the test set from initial 6.7
[5.7,7.7] kcal mol�1 with the original parameter set (q) to 2.8
[2.2,3.3] kcal mol�1, comparable to the performance of B3LYP/
aug-cc-pVTZ/B3LYP/6-31G(d)/SMD. Fig. 8B shows the distribu-
tion of DtG

exp
solv � DtGðq*Þcalcvac/solv. The Kullback–Leibler diver-

gence (KL) value for KLðDtG
exp
solvkDtGðq*Þcalcvac/solvÞ indicates that

the optimized parameter set is able to reproduce the distribu-
tion of the experimental free energies better than the initial
parameter set.

Fig. 8A shows the performance of the parameter set on the
ANI-1ccx training dataset.§ The RMSE of the parameter set for
the �500 000 data points of the dataset increases from initial
1.7 kcal mol�1 to 5.5 kcal mol�1. This increase in RMSE can be
partially explained by the target of the retraining: tautomeric
free energies in solution. Including solvation effects necessarily
decreases the performance on a gas phase dataset.

There is a limit to the reweighting workow, as indicated in
Fig. S.I.8,† that requires to re-sample the equilibrium distribu-
tions with the perturbed parameter set. The uncertainty of the
Chem. Sci., 2021, 12, 11364–11381 | 11373
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Fig. 8 Optimizing QML parameters on a set of experimentally obtained tautomer free energies in solution DtG
exp
solv enables ANI-1ccx to include

crucial solvation effects and improved estimates for tautomeric free energy differences can be obtained by importance weighting from vacuum
simulations using the optimized QML parameters. (A) Top panel shows the training (green) and validation (purple) set performance as DDtGsolv.
Validation set performance was plotted with a bootstrapped 95% confidence interval. The performance of the optimized parameter set is also
shown on the original ANI-1ccx dataset in blue. The best performing parameter set (evaluated on the validation set and indicated by the red
dotted line) was selected to evaluate its performance on the test set. The bottom panel shows theMAE for the energy difference between each of
the 400 parameter sets and the original parameter set on all the snapshots used for the free energy calculations (z1,2 million snapshots) split in
training/validation and test set as well as the original ANI1-ccx dataset. Figure (B) shows the distribution of DtG

exp
solv � DtG

calc
solv for a hold out test set

(71 tautomer pairs) with the native ANI-1ccx (q) and the optimization parameter set (q*). The optimized parameter set was able to improve the
prediction of tautomeric free energy differences from initial 6.7 kcal mol�1 to 2.8 kcal mol�1 (MAE improved from 5.3 to 2.0 kcal mol�1). The
difference in Kullback–Leibler divergence (KL) indicates that the tautomeric free energy differences obtained with the optimized parameter set
can reproduce the distribution of the experimental tautomer ratios much better than the free energy differences obtained with the original
parameter set.
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perturbed free energy estimate increases as the weights become
more concentrated on fewer observations and the effective
sample size shrinks.43 Using an arbitrary cutoff of 1 kT as
acceptable for the perturbed free energy uncertainty Fig. S.I.8†
indicates that conformations should be resampled aer around
400 epochs with the perturbed parameter set.

Coming back to the question posed in the beginning of this
section: yes, it appears to be possible to use experimental values
of a thermodynamic observable to retrain an already optimised
QML potential to improve its performance for predicting free
energies. This is astonishing, considering the small set of
experimental measurements used to retrain the potential
(z250 data points) that provides an unambiguous and
substantial improvement in performance on the held-out test
set. The learning curve shown in Fig. S.I.12† indicates that using
5% of the training data already improves the MAE by
2 kcal mol�1.

The regularization term restraining the QML parameter set
so that it is still able to reproduce single point energies with
comparable quality than the original parameter set (with an
increase in RMSE of �3 kcal mol�1) offers an interesting trade
off between high quality QM single point energies and highly
improved tautomeric free energy differences. It appears as if the
regularization term is not necessary to improve the tautomeric
free energy difference estimate, but introducing such
11374 | Chem. Sci., 2021, 12, 11364–11381
a regularization term in the loss function does also not signif-
icantly hinder the parameter set optimization (if the scaling
factors for the two terms in the loss function are chosen
reasonably). These results highlight the incredible potential of
QML energy functions that are differentiable with respect to its
parameters in addition to coordinates, enabling model tuning
based on experimental and quantum chemical data to be both
facile and incredibly powerful.
Discussion & conclusion

In this work we use a state of the art density functional theory
protocol and continuum solvation model to calculate tautomer
ratios for 460 tautomer pairs using three different approaches
to model the solvent contributions. The best performing
method uses B3LYP/aug-cc-pVTZ and the RRHO approximation
for the gas phase free energies (calculated on B3LYP/aug-cc-
pVTZ optimized geometries). The transfer free energy was
calculated using B3LYP/6-31G(d)/SMD on geometries optimized
in their respective phase (with B3LYP/aug-cc-pVTZ). This
approach performs with an RMSE of 3.1 kcal mol�1.

One possible source of error—independent of the method
used to calculate the electronic energy and model the
continuum electrostatics—are the thermochemical corrections
used to obtain the standard state free energy. Typically, an
© 2021 The Author(s). Published by the Royal Society of Chemistry
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analytic expression is used to approximate the partition func-
tion which is based on the rigid rotor harmonic oscillator
approximation. To obtain the correct and unbiased partition
function and compute rigorous free energy estimates we
implemented an alchemical relative free energy workow using
the ANI family of quantum machine learning (QML) poten-
tials.23 The method was implemented as a python package and
is available here: https://github.com/choderalab/
neutromeratio.

Using the same potential for the calculations based on the
RRHO and performing alchemical relative free energy calcula-
tions we are able to show that the RRHO approximation intro-
duces a mean absolute error of �1 kcal mol�1 in the calculation
of the investigated relative free energies. These errors can be
attributed to anharmonicity in bonded terms, difficulties to
enumerate relevant minimum conformations and in combining
shallow local energy wells as well as the inconsistent treatment
of internal and external symmetry numbers.

The ANI family of QML and comparable QML potentials have
opened the possibility to investigate tautomer ratios using
relative free energy calculations without prohibitive expensive
MM/QM schemes or ab initio simulations. The calculated
alchemical free energies obtained using the methods imple-
mented in the “Neutromeratio” package can be used to opti-
mized the parameters of the QML potential. Using a small set of
experimentally obtained tautomer ratios we were able to opti-
mize the QML parameters on a training set and signicantly
improve the accuracy of the calculated free energies on an
independent test set. The tautomeric free energies obtained
with the optimized parameter set improved the RMSE from
initial 6.7 kcal mol�1 to 2.8 kcal mol�1 on a hold-out test set of
71 tautomer pairs.

What should be noted here: the experimental values are
relative solvation free energies, while we calculate relative gas
phase free energies. To calculate correct tautomeric free ener-
gies in solution, solvent effects need to be included. In this work
solvent effects are modeled by tting the ANI QML parameters
to experimental relative solvation free energies. The use of
explicit solvent molecules is the preferable and recommended
solution. The optimization of QML parameters on a small set of
experimental free energies can be extended easily for explicit
solvent simulations (in Table S.I.2† we show results for
alchemical free energy calculations for 6 of the previously
investigated tautomer systems in a water droplet).

Obtaining accurate free energy differences between tautomer
pairs in solvent remains an elusive task. The subtle changes and
typically small difference in internal energies between tautomer
pairs require an accurate description of electronic structures.
Furthermore, solvent effects have a substantial effect on
tautomer ratios; consequently, a proper descriptor of solvation
is essential. The change in double bond pattern typically also
induce a change in the conformational degrees of freedom and,
related, in the conformation and rotational entropy. But—
despite all of these challenges—we remain optimistic that
further developments in fast and accurate neural net potentials
will enable improved and more robust protocols to use relative
free energy calculations to address these issues.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Detailed methods
Experimental data

The full dataset considered for this study was obtained from the
DataWarrior File deposited in https://github.com/WahlOya/
Tautobase (commit of Jul 23, 2019), described in detail in ref.
9. The dataset was sourced from the tautomer codex authored
by P. W. Kenny.34

From the dataset a subset of tautomer pairs were considered
that

(1) were measured/calculated/estimated in aqueous solution
(2) had a numeric log K value between �10
(3) had no charged species
(4) did not contain iodine
(5) only a single hydrogen and double bond change its

position.
476 of the 1680 deposited tautomer pairs had these proper-

ties. We added two tautomer pairs from the SAMPL2 challenge
(tautomer pair 2A_2B and 4A_4B).12 478 unique tautomer pairs
were considered for further analysis. The term ‘unique’
tautomer pair was dened in the following as containing
a unique combination of two molecules. We only consider
tautomer pairs, not tautomer equilibria with multiple tautomer
forms. In the following we will use an identier containing the
row number entry from the DataWarrier le to identify
tautomer pairs in the dataset, e.g. tp_200 describing the
tautomer pair (tp) at row number 200 in the original Data-
Warrior le.

The log K value was converted to free energies with DtG
exp
solv ¼

�RT ln K. The free energy difference of the tautomer pairs ob-
tained from the Tautobase are subsequently referenced as
DtG

exp
solv in contrast to the calculated values which are called

DtG
calc. While we call all values deposited in the Tautobase

DtG
exp
solv we want to point out that some of these values are esti-

mated or calculated.
Unfortunately, experimental error estimates are not depos-

ited in the Tautobase and subsequently also not modeled in this
manuscript. This highlights the need for further experimental
measurements of tautomer ratios.

A closer inspection of some of the outliers from preliminary
calculations identied molecules with incorrect structures in
the database (row entry: 1260, 1261, 1262, 1263, 1264, 514, 515,
516, 517, 1587)—these 10 tautomer pairs were subsequently
removed from all QM calculations (simulations using ANI
included the corrected tp_1260, tp_1261 and tp_1587). These
structures are corrected in the current version of the Tautobase.
Additionally, 8 tautomer pairs containing bromide (row entry:
989, 581, 582, 617, 618, 83, 952, 988) were removed from
calculations performed with the basis set 6-31G(d) due to the
lack of adequate parameters.

ANI-1 is parameterized on molecules containing only
carbon, nitrogen, hydrogen and oxygen, making a further
removal of tautomer pairs containing elements beside the
aforementioned necessary.23 This resulted in 369 tautomer
pairs.
Chem. Sci., 2021, 12, 11364–11381 | 11375
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The tautomer pair set used for relative alchemical free energy
calculations needed one additional lter. Molecules with
a stereobond that changes its position between tautomers had
to be removed (this affected 15 tautomer pairs: tp_1637, tp_510,
tp_513, tp_515, tp_517, tp_518, tp_787, tp_788, tp_789, tp_810,
tp_811, tp_812, tp_865, tp_866, tp_867). Such stereobonds
introduce additional complexity since it would be necessary to
introduce restraints to dene the stereochemistry during the
lambda protocol.

The subset of the Tautobase used for the QM calculations
can be obtained here as list of SMILES (468 tautomer pairs):
https://github.com/choderalab/neutromeratio/blob/master/
data/b3lyp_tautobase_subset.txt. The subset of the Tautobase
used for the QML calculations can be found here as list of
SMILES (354 tautomer pairs): https://github.com/choderalab/
neutromeratio/blob/master/data/ani_tautobase_subset.txt. The
distribution of the experimental tautomer free energies for both
datasets is shown in Fig. 9.
Generating molecular conformations

The input tautomer pairs were specied as SMILES strings. 3D
conformations were generated with the chemoinformatics
toolkit RDKit (version 2019.09.2) which uses the distance
geometry approach to generate conformations while enforcing
chirality/stereochemistry44,45 For each molecule 20 conforma-
tions were initially generated. The number of conformations
was reduced to 10 if the average root mean square deviation
(RMSD) of atom coordinates of the 20 conformations was below
0.5 Å, and further reduced to 5 conformations if below 0.2 Å.
RMSD calculations and ltering of conformations

For each molecule, pairwise RMSD between conformations
were calculated using RDKit. Starting with a random confor-
mation, if the RMSD to any other conformation of the molecule
was below 0.1 the conformation is discarded, otherwise added
to the list of unique conformations. The RMSD was calculated
between heavy atoms and the hydrogen of selected chemical
Fig. 9 The tautomer dataset shows a wide variety of solvation free ener
QML calculations and (B) shows the QM-Tautobase subset used for the Q
from the DataWorrier File deposited at https://github.com/WahlOya/T
selection criteria for both datasets are described in detail in Detailed me

11376 | Chem. Sci., 2021, 12, 11364–11381
moieties including primary alcohols, imines, primary/
secondary amines, cyanamides and thiols.
Combining energies of conformations

Energies of different minimum conformations of the same
molecule were weighted and combined using the following
scheme

G ¼ �RT ln

 XN
k¼1

e�Gk=RT

!
(2)

with N as the number of minimum conformations and G the
free energy at the minimum conformation k. The obtained free
energies will be called weighted free energies in the following.
Quantum mechanical calculations

The following quantum mechanical (QM) calculations were
performed using the quantum chemical soware orca 4.0.1.2.46

The universal solvation model based on solute electron density
(SMD) was used as continuum solvation model.32

Geometric optimization, single point energy and frequency
calculation. Geometric optimization was performed with the
standard options of orca, redundant internal coordinates and
the BFGS optimizer.27–29 Frequency calculations were performed
with the numerical Hessian computed using the central
differences approach. If a conformation had negative frequen-
cies (imaginary modes) aer the geometry optimization it was
excluded from further analysis. Single point calculations were
performed on the optimized geometries using B3LYP and the
basis set aug-cc-pVTZ or 6-31G(d).30,31 A damping dispersion
correction was applied (orca keyword D3BJ).47

Continuum solvation model. The continuum solvation
model SMD was used to model the molecules in aqueous
environment.32 Since there is a volume change in the standard
state from the gas phase (1 atm) to the solvent phase the gas
phase standard state is indicated by ‘*’ and the solvation stan-
dard state by ‘�’. The standard-state transfer free energy is then
dened as
gies DGexp
solv. (A) shows the ANI-Tautobase subset that was used for the

M calculations. The full dataset considered for this study was obtained
autobase (commit of Jul 23, 2019), described in detail in ref. 9. The
thods section.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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DG
�
S ¼ DG*/� þ DGENP þ GCDS (3)

with DG*/�
as standard-state adjustments (specically, the

correction of changing the volume from the gas phase to the
solute phase with a constant value of 1.89 kcal mol�1), DGENP

describes the electronic (E), nuclear (N) and polarization (P)
components of the free energy and DGCDS free energy changes
associated with solvent cavitation (C), changes in dispersion (D)
and changes in local solvent structure (S).32

Free energy and free energy in solution calculations.
Thermal corrections were computed at standard state (298.15 K
and 1 atm pressure) using the ideal gas molecular partition
function and the rigid-rotor harmonic oscillator (RRHO)
approximation. Low-lying vibrational frequencies (below
15 cm�1) were treated by a free-rotor approximation48—this
method is also sometimes called rigid-rotor quasi harmonic
oscillator. The external (rotational) symmetry number was ob-
tained from the point group of the tautomer using the point
group module of Jmol and visual inspection and used to correct
the rotational entropy calculated by orca.49

The Gibbs free energy in gas phase G*
gas;k for a given coor-

dinate set (k) was obtained by adding thermal corrections G*
T;k

for conformer k at temperature T and zero point energy (ZPE)
contributions 3ZPE,K to the electronic energy Ek.22 The degen-
eracy D describes the entropy contribution of internal rotors
and is not added for the calculations shown in the main text
(results including degeneracy D are shown in the ESI†).

G*
gas;k ¼ Ek þ 3ZPE;k þ G*

T ;k � RT ln D (4)

The degeneracy D was estimated by calculating the graph
automorphism of the molecule. The implementation of the VF2
algorithm for graph isomorphism of networkx was used.50

Nodes were dened to match if element and hybridization
matched, edges were identical if bond order matched.

The tautomeric free energy difference in solution DtG
calc
solv can

be calculated from the standard-state Gibbs free energy in
aqueous phase G

�
solv of the product and educt of the corre-

sponding tautomer reaction, which itself is calculated as the
sum of the gas-phase standard-state free energy G*

gas and the
standard-state transfer free energy DG*/�

S expressed as

G
�
solv;k ¼ G*

gas;k þ DG*/�
S;k (5)

for a given conformation k and shown as a thermodynamic cycle
in Fig. 1.

An alternative way to calculate the free energy in aqueous
phase G

�
solv;k used in the manuscript is

G
�
solv;k ¼

�
jsol

����Hg þ V

2

����jsol

�
þ GNES þ GT ;K (6)

where jsol is the polarized wave function in solution, Hg the gas
phase Hamiltonian, and V the potential energy operator asso-
ciated with the reaction eld. The bracket term describes the
electronic energy, while GNES is associated with non-
electrostatic contributions (dispersion–repulsion and solvent
structural terms) to the solvation energy and GT,K are the
© 2021 The Author(s). Published by the Royal Society of Chemistry
thermal correction calculated directly in the continuum solva-
tion model.51
ASE thermochemistry corrections

ANI-1ccx was used to calculate the electronic energy. The
conformations were minimized using the BFGS optimizer as
implemented in scipy.52 Frequency and thermochemistry
calculations were performed using the optimized geometry.
Thermal corrections were calculated at 300 K and 1 atm using
the IG-RRHO approximation as implemented in the atomic
simulation environment (ase).53 The tautomeric free energy
difference in gas phase DtGvac was then calculated as the
difference between G

�
gas of the tautomer pair.
Relative alchemical free energy calculations

Relative alchemical free energies were calculated using a single
topology approach. The topology of each tautomer pair only
differed in the position of a single hydrogen (atom types and
bonds were not specied). The hybrid topology (the superset of
the two topologies) differed therefore by one hydrogen from
each of the physical endstates.

By default, the coordinates of the hybrid topology were
generated by using the coordinates of ‘Tautomer1’ (as dened
in the Tautobase database). If a tautomer isomerism created or
removed a cis/trans stereobond, the initial coordinates were
taken from the topology with the stereobond present (therefore
sometimes changing the direction of the tautomer reaction).

The coordinates of the added, non-interacting hydrogen
were obtained by randomly sampling 100 positions on the
surface of a sphere (with radius of 1.02 Å) dened around its
new bonded heavy atom and subsequently using the lowest
energy position as the starting conformation for each lambda
window for the free energy calculation. The physical endstates
(representing the two tautomer states, each with an additional
non-interacting (dummy) hydrogen) were connected via 11
equidistant intermediate (lambda) states.

Energy and forces were calculated using ANI1-ccx as imple-
mented in torchani https://github.com/aiqm/torchani). The
energy and force was linearly scaled along the alchemical path
as a function of lambda with

E ¼ (1 � l)E1 + lE2 (7)

with E1 and E2 representing the potential energy at the physcial
endstates. Before each simulation, initial coordinates were
minimized using a BFGS optimizer as implemented in scipy.52

Coordinates were sampled using Langevin dynamics at 300 K
with a collision rate of 10 ps�1 and a 0.5 fs time step using the
BAOAB integrator.54 Initial velocities were obtained from
a Maxwell–Boltzmann distribution at the simulation
temperature.

Because nuclei can rearrange to form distinct chemical
species in highly perturbed simulations, we applied a at-
bottom harmonic restraint to covalent bonds to ensure we
sampled the desired chemical species in initial and nal states
of the free energy calculation. The restraint was dened as
Chem. Sci., 2021, 12, 11364–11381 | 11377
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E ¼ H
�
D
�
ri;j ; r

0
i;j

�
� rfb

�
� ki;j

2

�
D
�
ri;j ; r

0
i;j

�
� rfb

�2
(8)

with H as the Heaviside step function, D(ri,j,r
0
i,j) as the difference

between the reference bond length r0i,j and the current bond
length ri,j and r as half of the well radius. For all heavy atom
pairs r0i,j was set to 1.3 Å and r to 0.3 Å with ki,j set to kBT/0.1 Å.
For C–H/O–H/N–H bond pairs r0i,j was set to 1.02 Å (the average
of the three different equilibrium bond length of C–H/O–H/N–H
bond pairs) and r to 0.4 Å with ki,j set to kBT/0.2 Å. The restraint
well was chosen so that the restraint does not interfere with
normal bond stretching but will activate once a bond is
broken.

Samples were obtained from 200 ps simulations for each
lambda state. For each tautomer pair calculations were repeated
5 times with randomly seeded initial velocities (and coordi-
nates). Relative alchemical free energies DGcalc

vac were calculated
using MBAR as implemented in the pymbar package.43 300
uncorrelated snapshots were considered for the MBAR analysis
from each lambda state.
Neural net parameter optimization based on experimental
relative solvation free energies

The tautomer data set was randomly split (20 : 20 : 60) into
a test set (71), validation set (71) and training set (212 tautomer
pairs). Neural net parameters were optimized using a routine
modied from the TorchANI tutorial.{ To limit the capacity to
overt, only the weights and biases of the nal layer of each of
the 8 pretrained ANI-1ccx models were optimized for each of the
atom nets (one net per element), resulting in roughly 8� 4 � 97
tunable parameters (8 neural nets, each with 4 atom nets con-
taining 97 weights and bias) for ANI-1ccx. As in the TorchANI
tutorial, the weight matrices were updated using the Adam
optimizer with decoupled weight decay (AdamW), and the bias
vectors were updated using Stochastic Gradient Descent (SGD).
The training data was randomly partitioned in each epoch in
mini-batches of 10 tautomer pairs and gradient updates were
performed for each mini-batch. Training was performed for 400
epochs. The best model was chosen based on the RMSE on the
validation set and model performance reported on the test set.

The model was trained by minimizing the mean squared
error (MSE) loss between calculated and experimental relative
free energies. If regularization was used, the mean absolute
error (MAE) between the energy for the parameter set q* and the
original parameter set q was calculated on the individual
snapshots used for the free energy calculation (11 � 300 snap-
shots) with the potential energy function at l¼ 0 and l¼ 1. The
regularization term was normalized using the number of atoms
of the tautomer system. The per molecule pair (m) loss function
l is dened as

lðm; q*; epochÞ ¼ gðepochÞ �MSE
�
DGexp

solv;m;DGðq*Þcalcvac/solv;m

�
þ f ðepochÞ �MAEðDEðq; q*ÞÞ

(9)

with DGexp
solv,m as the experimental and DGðq*Þcalcvac/solv;m as the

calculated tautomeric free energy differences for tautomer pair
11378 | Chem. Sci., 2021, 12, 11364–11381
m using parameters q*. The two scaling factors f(epoch) and
g(epoch) were used to control the contribution of the two terms
as a function of training epoch. For the nal results the values
for g (labeled ‘scaling dG’) and f (labeled ‘scaling dE’) is shown
in Fig. S.I.9.†

The overall loss is then

LðqÞ ¼
X
m

lðm; qÞ: (10)

The perturbed relative free energy DG(q*)calcvac,m required for
computing l(m; q*) is calculated by importance sampling, or
“reweighting” the original MBAR estimate from the original pre-
trained parameters q to the current parameters q*. To compute
this estimate efficiently at arbitrary q*, we rst collect congu-
ration samples at a reference value q (corresponding to the
original parameters of the pretrained ANI-1ccx model) for each
intermediate value l. For each conguration sample x, we
compute the reduced potential u(x, l; q), to form the N � M
matrix of inputs to MBAR (where N is the total number of
snapshots, M is number of l windows). MBAR equations are
solved to yield a vector of reduced free energies f *m, where m
indexes the intermediate l values. The relative free energy
prediction implied by the model parameters q* is then f *M � f *1 .

To compute relative free energies at a new value of the
parameters q*, we need to compute u(x, l¼ 1; q*) and u(x, l¼ 0;
q*) for all congurations x. The optimization routine evaluates
the gradient of the loss function L w.r.t. q* by automatic
differentiation and updates the parameters.

300 uncorrelated snapshots per l state were used for the
MBAR estimate and importance sampling for the vacuum
simulations.
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