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al modification of the isatin
scaffold to develop new and potent antimicrobial
agents targeting bacterial peptidoglycan
glycosyltransferase†
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Siu-Cheong Yan, Pui-Kin So, Yun-Chung Leung, Wing-Leung Wong
and Kwok-Yin Wong *

A series of isatin derivatives bearing three different substituent groups at the N-1, C-3 and C-5 positions of

the isatin scaffold were systematically designed and synthesized to study the structure–activity relationship

of their inhibition of bacterial peptidoglycan glycosyltransferase (PGT) activity and antimicrobial

susceptibility against S. aureus, E. coli and methicillin-resistant Staphylococcus aureus (MRSA (BAA41))

strains. The substituents at these sites are pointing towards three different directions from the isatin

scaffold to interact with the amino acid residues in the binding pocket of PGT. Comparative studies of

their structure–activity relationship allow us to gain better understanding of the direction of the

substituents that contribute critical interactions leading to inhibition activity against the bacterial enzyme.

Our results indicate that the modification of these sites is able to maximize the antimicrobial potency

and inhibitory action against the bacterial enzyme. Two compounds show good antimicrobial potency

(MIC ¼ 3 mg mL�1 against S. aureus and MRSA; 12–24 mg mL�1 against E. coli). Results of the inhibition

study against the bacterial enzyme (E. coli PBP 1b) reveal that some compounds are able to achieve

excellent in vitro inhibitions of bacterial enzymatic activity (up to 100%). The best half maximal inhibitory

concentration (IC50) observed among the new compounds is 8.9 mM.
1. Introduction

Since the rst discovery of the penicillin antibiotic in 1928, it
has started the golden era of antibiotic discovery and develop-
ment based on natural products.1 Over the past several decades,
b-lactam antibiotics, such as penicillins, cephalosporins,
monobactams, and carbacephems have been the most impor-
tant and widely used clinical drugs to treat worldwide bacterial
infections.2 The bacterial cell walls, of either Gram-positive or
Gram-negative bacteria, play important roles to support
bacteria to survive. Bacterial cell walls are constructed from
peptidoglycans, which are cross-linked biopolymers.3 Most b-
lactam antibiotics kill bacteria through the effective inhibition
of the formation of peptidoglycan cross-links.4 Unfortunately,
the overuse and sometimes abuse in various elds (e.g. ranging
from clinical treatment to animal farming), bacteria evolve
continuously into more powerful drug-resistant strains, and the
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ever evolution of drug resistance in many human pathogens has
caused the emergence of worldwide ‘superbug crisis’, which
seriously threaten global human health.5,6

There are two generally accepted approaches to resolving the
crisis of antimicrobial resistance: (i) development of synergistic
combined therapies via the development of broad-spectrum
inhibitors to restore the antibacterial activity of conventional
antibiotics,7,8 and (ii) discovery of new antibiotics with a novel
mode of antibacterial mechanism different from that of b-lactam
antibiotics;9,10 to this end, scientists have to target at a new and
highly conserved and critical bacterial enzyme for drug discovery.
Over the last century, inhibition of bacterial cell wall syntheses is
the most effective mean to inhibit bacterial growths by inducing
their cell lysis.11 It is well known that both peptidoglycan glyco-
syltransferase (PGT) and transpeptidase (TP) activities of penicillin-
binding proteins (PBPs) are essential for synthesizing bacterial cell
walls. Although antibiotic resistance has emerged on the TP/PBP
module, PGT is denitely another critical target for new drug
discovery.12–16 However, compared to TP, the understanding and
research ndings about the structural and functional information
of PGT are very limited, which largely restricts the rational design
of new PGT inhibitors with high potency. The discovery of new
inhibitors against PGT is therefore still very challenging.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Over the past twenty years, only a few potent inhibitors
against PGT have been reported. Examples include
disaccharide-modied molecules,17–20 monosaccharide-
modied scaffolds,13 phosphoglycolipid AC326-a,21 coleopho-
mones A and B,22 structurally modied moenomycin A deriva-
tive,23–26 modied peptidoglycan analogues,27 tryptamine-based
compounds,28 and small molecules identied via high-
throughput screening.29–33 Most inhibitors discovered so far
are based on high-throughput screening, while inhibitors
against the lipid-II binding site of PGT through molecular
designs remain rare.34 Nonetheless, rational design of small
molecule-based inhibitors with diverse structural scaffolds
provides a good approach to understanding structure–activity
relationship in depth. Moreover, this method enriches the
molecular diversity for further improving the potency of PGT
inhibitors. Our previous study via high-throughput screening
has successfully identied a natural heterocyclic compound,
isatin (1H indole-2,3-dione), which is found to be a potential
PGT inhibitor aer a simple modication on its N-1 and C-3
positions.32,35 The 2-site structural modications, however,
have not fully utilized the potential pharmacological properties
of isatin moiety because its molecular scaffold allows multi-site
three-directional structure modications to create additional
chemical features to t for a specic purpose. Recent literature
have shown that the diverse pharmacological properties of
isatin-modied compounds have been identied in many other
research areas,36,37 such as anti-cancer,38 anti-tubercular,39

antimalarial,40 anti-HIV41 and anti-bacterial42,43 treatments with
good potency. In the present study, bacterial PGT inhibitors
with three-directional structural modications based on the
isatin scaffold at the N-1, C-3 and C-5 positions (Scheme 1) was
synthesized through structure-based design and then studied to
gain better understanding of their structure–activity relation-
ships towards the lipid-II binding pocket of bacterial peptido-
glycan glycosyltransferase. The antimicrobial potency of the
new inhibitors against Gram-positive (S. aureus (29213)), Gram-
negative (E. coli (25922)) strains, and methicillin-resistant
Staphylococcus aureus (MRSA (BAA41)) were also investigated.

2. Results and discussion

Twelve isatin derivatives bearing three different substituent
groups at the N-1, C-3 and C-5 positions of isatin scaffold
(Scheme 1) were synthesized through two different synthetic
approaches (Fig. S1†). The substituents at these positions of
isatin are pointing to three different directions (Scheme 1),
which allow maximizing the molecular interactions with the
PGT binding pocket. More importantly, studying the activities
of these compounds enable us to nd out the direction of the
substituent that provides critical interactions. The N-1 site was
substituted with a exible and lipophilic chain of various
lengths (the carbon number of the aliphatic chain ranges from 4
to 14) as this substituent has been proposed to point towards
the bacterial cell membrane region, where non-polar interac-
tions are favorable. For the C-3 site, the functional ketone group
of isatin was replaced with a polar guanidine group, which
bears a positive charge (protonated form) and can therefore
© 2021 The Author(s). Published by the Royal Society of Chemistry
allow effective polar interactions with polar amino acid residues
in the PGT binding pocket through hydrogen bonding and/or
charge interactions. The PGT-inhibitory activity of the substit-
uent effect at the C-5 site of isatin has not been investigated so
far. This prompted us to synthesize four different substituents
at this site so as to conduct comparative structure–activity
relationship studies on the inhibitory activity against E. coli PBP
1b enzyme and the MIC effects against the Gram-positive and
negative strains.

The antimicrobial susceptibility tests of the new 3-site
modied isatin derivatives were conducted with three strains: S.
aureus, MRSA, and E. coli. The MIC results are summarized in
Table 1. Compound 1, with no substituent at its C-5 site, show
a MIC of 6 mg mL�1 (against S. aureus), 6 mg mL�1 (against
MRSA), and 12 mg mL�1 (against E. coli), respectively. When
a methyl group (–CH3) was introduced at the C-5 site
(compound 2), its antimicrobial potency appears to increase
against the strains (3 mg mL�1 for S. aureus and MRSA; 12 mg
mL�1 for E. coli). These results indicate that the C-5 site of isatin
scaffold is important for structural modications. We therefore
further modied the structure with an electron-donating
methoxy group (–OCH3) and electron withdrawing groups (–F
and –NO2) for comparison purposes. However, regarding the
MIC values, a gradual reduction in the antimicrobial potency
with these substituents appears (Table 1). Moreover, a MIC
trend on the substituent groups at the C-5 site decreases in this
order: –CH3 > –H z –OCH3 > –F > –NO2 (Table 1). It seems that
the nitro-group shows a signicant decline in the antimicrobial
potency (MIC > 192 mg mL�1), which is probably due to the
strong electron-withdrawing character of –NO2 group that may
reduce its ability to develop hydrogen bonding interactions in
the PGT active site.44 To further verify these compounds can
bind to PBP 1b enzyme and interfere with the lipid II poly-
merization, in vitro HPLC analyses using uorescent dansyl-
lipid II as the substrate45,46 were conducted against E. coli PBP
1b. The result indicates that compound 2 has the best inhibitory
effect (the residual activity of the enzyme ¼ 12%), while
compound 5 with a nitro-substituent at the C-5 site shows no
signicant inhibitory effect. In this regard, the HPLC data are
consistent with their MIC values. The results implies that the
antimicrobial activity of the compounds is probably attributed
to the inhibition of PBP 1b enzyme activity.

We further modied the structure of compound 2 at the C-3
and N-1 sites for structure–activity comparison. At the N-1 site,
a series of n-alkyl chains with various carbon atoms was
synthesized, and the compounds (6–11) were also examined for
their MIC values against three strains. Compound 6 has a short
n-alkyl chain (butyl group) substituted at the N-1 site shows
much poorer antimicrobial potency than compound 2 that
bears a butylphenyl group at the same site. Interestingly, when
the length of the n-alkyl chain increases from butyl to decyl
(compound 7, 8, and 9), the antimicrobial activities of the
compounds are improved gradually. This indicates that the N-1
site is sensitive to the hydrophobicity of the substituent, which
probably interacts with the lipophilic region of the bacterial
membrane. It seems that an aliphatic chain with 10 carbon
atoms has optimal antimicrobial activity (MIC of compound 9¼
RSC Adv., 2021, 11, 18122–18130 | 18123
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Scheme 1 Three-site modified isatin derivatives for new antimicrobial studies on bacterial peptidoglycan glycosyltransferase (PGT).
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3 mg mL�1 against S. aureus and MRSA). Further increasing the
chain length results in a signicant reduction in antimicrobial
potency; for example, compound 11 gave MIC >192 against S.
aureus, MRSA, and E. coli. In general, the substitution at the N-1
site with a long aliphatic chain (8–11 carbon atoms) can
enhance the inhibitory activity against PBP 1b but is unable to
improve further the antibacterial potency, probably due to
unfavorable factors, such as poor solubility and diffusion
problem caused by the highly hydrophobic and bulky
Table 1 Antimicrobial susceptibility tests with the new 3-site modified is
and their Ki values

Compounds

MIC (mg mL�1)

S. aureus (29213) MRSA (BAA41)

1 6 6
2 3 3
3 6 6
4 12 12
5 >192 >192
6 96 96
7 12 12
8 6 6
9 3 3
10 6 6
11 >192 >192
12 >192 >192
Moenomycin Aa <0.75 <0.75

a E. coli PBP 1b inhibitor.16

18124 | RSC Adv., 2021, 11, 18122–18130
molecules. Based on the results of the compound series,
compound 2 and 9 are the most potent antibacterial agents and
their Ki values against E. coli PBP 1b are 3.2 and 2.4 mM,
respectively (Fig. 1).

In order to demonstrate the importance of the guanidine
moiety at the C-3 site of isatin, we replaced it with thio-
semicarbazide (compound 12). Results of the enzyme inhibition
assay and antibacterial ability test, the in vitro inhibitory enzy-
matic activity of compound 12 is signicantly reduced as
atin derivatives and the inhibition assays against E. coli PBP 1b enzyme

Inhibition of PBP
1b activity at 50 mM Ki (mM)

E. coli
(25922)

12 17% n.d.
12 88% 3.2
12 64% n.d.
48 14% n.d.
>192 0% n.d.
96 4% n.d.
24 0% n.d.
12 71% n.d.
24 100% 2.4
48 100% n.d.
>192 100% n.d.
>192 40% n.d.
>96 100% 1.9 � 10�3

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Half maximal inhibitory concentration of compound 2 and 9 against E. coli PBP 1b.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
M

ay
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

0/
6/

20
24

 2
:4

3:
34

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
compared to compound 9. Inhibition assays with compound 12
at 50 mM, E. coli PBP 1b retains 60% activity while compound 9
achieves 100% inhibition (Table 1). Moreover, compound 12
reveals very weak antibacterial activity, as indicated by its rela-
tively highMIC value > 192 mg mL�1 against the bacterial strains
examined. These results suggest that the C-3 site requires
a highly polar group (e.g. guanidine) capable of providing strong
hydrogen bonding and/or charge interactions with the polar
residues in the PGT binding pocket.

The cytotoxicity of compound 2, 9, and 12 were evaluated
with MTT assays using a normal human cell line BJ (ATCC CRL-
2522) for 24 h treatment. The results are shown in Fig. 2.
Compound 2 and 9 show comparable cell proliferation proles.
At the concentration of 2 mg mL�1 or below, the cell viability is
higher than 80%, indicating that both compounds are not toxic
to the cells at these concentrations. The IC50 estimated for
compound 2 and 9 against BJ cells are 6.6 mg mL�1 and 5.4 mg
mL�1 (analyzed with Prism 6.0), which are higher than the MIC
value (3 mg mL�1) of compound 2 and 9 against S. aureus and
MRSA strains (Table 1). Moreover, it is noteworthy that
compound 12 has a relatively low cytotoxicity, as revealed by
about 80% cell viability aer incubation at much higher
concentration (18 mg mL�1). The results suggest that the cyto-
toxicity of the compounds is likely to be attributed from the
guanidine moiety at the C-3 site of the isatin scaffold.
Fig. 2 Cytotoxicity evaluation for compound 2, 9, and 12 in cell
proliferation of a normal human cell line BJ (ATCC CRL-2522) in 24 h
treatment. Data are presented in mean � SD of three independence
experiments, each performed in triplicate.

© 2021 The Author(s). Published by the Royal Society of Chemistry
Molecular docking study was then performed to understand
the possible binding modes and locations of the molecules in
the PGT binding pocket. The docking models between the
selected compounds (compound 2, 6, 9 and 12) and S. aureus
monofunctional glycosyltransferase (Mtg) were generated by
AutoDock Vina. The most favorable interaction modes are
shown in Fig. 3 and S5.† All these compounds are located at the
same region, which is different from the natural macromolec-
ular inhibitor moenomycin A. It is, however, interesting to note
that both the non-polar aliphatic chains substituted at the N-1
site of the compounds (except compound 6 with a short butyl
chain) and the long C25 isoprene tail of moenomycin A are
pointing to the same direction to interact with the trans-
membrane region of the enzyme. This possibly causes
compound 6 has much lower inhibitory enzymatic activity than
compound 9. In addition, the decyl group of compound 9 also
exhibits hydrophobic interactions with Phe110, Leu112,
Phe157, and Leu158. The methyl group substituted at the C-5
site of the molecule shows a close contact with Thr115.
Furthermore, its guanidine group at the C-3 site forms six
hydrogen bonds with Gln100, Gln129, Gly130, Thr133, and
Gln136, thus giving strong binding interactions. When the
guanidine group is replaced by thiosemicarbazide, the binding
between compound 12 and PGT is weakened due to loss of two
hydrogen bonds. These docking results are consistent with their
relatively low MIC values and the in vitro inhibition activities
against the E. coli PBP 1b enzyme.
3. Experimental
3.1. General synthetic procedures of N-4-butylphenyl-5-
substituent-isatin analogues (compound 1–5)

Compound 1 was synthesized and puried by following the
reported procedures.35 For the synthesis of compound 2–5, to
the mixture of 1 mM 5-substituent isatin, 1 mM 4-butylphenyl
boronic acid, 3 mM triethylamine in 20 mL CH2Cl2 and acti-
vated 4 Å molecular sieve, 1 mM copper(II) acetate were added,
and the mixture was kept stirring until reaction was completed.
The solid was then removed and washed by CH2Cl2 (20 mL� 3).
The combined organic layer was dried with anhydrous Na2SO4.
Aer removal of the solvent, the product was puried by silica
gel chromatography with ethyl acetate/petroleum ether (vol.
RSC Adv., 2021, 11, 18122–18130 | 18125
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Fig. 3 (A) Docking models between inhibitors (compound 2, 6, 9 and 12) and S. aureusmonofunctional glycosyltransferase (protein ID: 3HZS):47

moenomycin A (red), compound 2 (blue), 6 (yellow), 9 (purple), and 12 (cyan). (B) The interactions between 9 and S. aureus monofunctional
glycosyltransferase were generated from AutoDock tools.48,49

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
M

ay
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

0/
6/

20
24

 2
:4

3:
34

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
ratio ¼ 1 : 4) as the eluent. The nal product was obtained by
reuxing the mixture of 0.5 mM N-4-butylphenyl-5-substituent-
isatin and 0.6 mM aminoguanidine hydrochloride in CH3COOH
(10 mL) for 2 h. Yellow solid was obtained by introducing
diethyl ether into the mixture. Finally, the product was puried
by silica gel chromatography with methanol/dichloromethane
(vol. ratio ¼ 1 : 10) as the eluent.
3.2. General synthetic procedures of N-aliphatic chain-5-
methyl-isatin analogues (compound 6–12)

To the mixture of 1 mM 5-methylisatin, 1 mM 1-bromo aliphatic
alkane in 10 mL of DMF and 3 mM potassium carbonate were
added, and the mixture was stirred at 80 �C for 5 h until starting
compounds were consumed. The mixture was then poured into
cold water and extracted by ethyl acetate (20 mL � 3) and
washed by DI water (20 mL � 3), followed by drying with
anhydrous Na2SO4. Aer removing the solvent, the product was
puried by silica gel chromatography with ethyl acetate/
petroleum ether (vol. ratio ¼ 1 : 5) as the eluent. The nal
product was obtained as previously described.
3.3. Characterization of compounds

Compound 2. Yield 75%. 1H NMR (400 MHz, CD3OD) d: 1.00
(t, J ¼ 7.4 Hz, 3H, CH2CH3), 1.39–1.48 (m, 2H, CH2CH3), 1.65–
1.73 (m, 2H, CH2CH2), 2.40 (s, 3H, Ar-CH3), 2.74 (t, 2H, J ¼
7.7 Hz, N–CH2), 6.79 (d, J¼ 8.1 Hz, 1H, Ar-H), 7.26 (d, J¼ 8.1 Hz,
1H, Ar-H), 7.37–7.44 (m, 4H, Ar-H), 7.69 (s, 1H, Ar-H). 13C NMR
(125 MHz, CD3OD) d: 12.92, 19.63, 22.01, 33.51, 34.97, 110.08,
119.06, 121.98, 126.04, 129.45, 130.66, 132.64, 133.70, 137.53,
142.61, 143.77, 156.43, 160.63. HRMS calculated for C20H24N5O:
m/z: 350.1975 [M + H]+, found 350.1981. HPLC analysis (mobile
phase: 20% water in methanol): retention time ¼ 14.5 min;
purity > 95%.

Compound 3. Yield 65%. 1H NMR (400 MHz, CD3OD) d: 1.00
(t, J ¼ 7.4 Hz, 3H, CH2CH3), 1.39–1.48 (m, 2H, CH2CH3), 1.65–
18126 | RSC Adv., 2021, 11, 18122–18130
1.73 (m, 2H, CH2CH2), 2.74 (t, 2H, J ¼ 7.7 Hz, Ar-CH2), 3.86 (s,
3H, OCH3), 6.83 (d, J¼ 8.7 Hz, 1H, Ar-H), 7.01 (d, J¼ 8.7 Hz, 1H,
Ar-H), 7.38–7.44 (m, 4H, Ar-H), 7.48 (s, 1H, Ar-H). 13C NMR (125
MHz, CD3OD). d: 12.93, 22.02, 33.51, 34.97, 55.05, 106.83,
111.13, 117.89, 119.95, 125.93, 129.44, 130.74, 137.49, 138.35,
143.67, 156.52, 157.00, 160.49. HRMS calculated for
C20H24N5O2: m/z: 366.1925 [M + H]+, found 366.1924.

Compound 4. Yield 63%. 1H NMR (400 MHz, CD3OD) d: 0.99
(t, J ¼ 7.3 Hz, 3H, CH2CH3), 1.38–1.48 (m, 2H, CH2CH3), 1.65–
1.72 (m, 2H, CH2CH2), 2.74 (t, 2H, J ¼ 7.7 Hz, Ar-CH2), 6.86 (d, J
¼ 8.7 Hz, 1H, Ar-H), 7.16 (t, J ¼ 8.9 Hz, 1H, Ar-H), 7.37–7.44 (m,
4H, Ar-H), 7.61 (d, J ¼ 7.8 Hz, 1H, Ar-H). 13C NMR (125 MHz,
CD3OD). d: 12.87, 21.96, 33.41, 34.91, 108.24, 108.50, 111.30,
117.72, 117.96, 126.13, 129.43, 130.49, 136.20, 140.45, 143.78,
158.46, 160.85. HRMS calculated for C19H21FN5O:m/z: 354.1725
[M + H]+, found 354.1724.

Compound 5. Yield 50%. 1H NMR (400 MHz, CD3OD) d: 0.94
(t, J ¼ 7.3 Hz, 3H, CH2CH3), 1.32–1.42 (m, 2H, CH2CH3), 1.59–
1.67 (m, 2H, CH2CH2), 2.68 (t, 2H, J ¼ 7.7 Hz, Ar-CH2), 6.88 (d, J
¼ 8.8 Hz, 1H, Ar-H), 7.36–7.43 (m, 4H, Ar-H), 8.11 (d, J ¼ 8.8 Hz,
1H, Ar-H), 9.22 (s, 1H, Ar-H). 13C NMR (125 MHz, CD3OD). d:
14.33, 22.34, 33.60, 35.03, 108.60, 118.49, 119.88, 124.65,
127.44, 129.93, 129.66, 132.22, 142.85, 143.09, 146.30, 165.21,
165.29. HRMS calculated for C19H21N6O3: m/z: 381.1670 [M +
H]+, found 381.1667.

Compound 6. Yield 90%. 1H NMR (400 MHz, CD3OD) d: 0.99
(t, J ¼ 7.3 Hz, 3H, CH2CH3), 1.36–1.46 (m, 2H, CH2CH3), 1.67–
1.74 (m, 2H, CH2CH2), 2.38 (s, 3H, Ar-CH3), 3.79 (t, 2H, J ¼
7.1 Hz, N–CH2), 7.00 (d, J¼ 8.0 Hz, 1H, Ar-H), 7.31 (d, J¼ 8.0 Hz,
1H, Ar-H), 7.60 (s, 1H, Ar-H). 13C NMR (125 MHz, CD3OD). d:
12.66, 19.62, 19.71, 29.27, 39.13, 109.59, 118.92, 121.98, 132.77,
133.14, 137.78, 141.72, 156.27, 161.13. HRMS calculated for
C14H20N5O: m/z: 274.1662 [M + H]+, found 274.1674.

Compound 7. Yield 85%. 1H NMR (400 MHz, CD3OD) d: 0.91
(t, J ¼ 7.1 Hz, 3H, CH2CH3), 1.33–1.36 (m, 6H, CH2), 1.68–1.74
(m, 2H, CH2), 2.38 (s, 3H, Ar-CH3), 3.78 (t, 2H, J ¼ 7.2 Hz, N–
© 2021 The Author(s). Published by the Royal Society of Chemistry
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CH2), 7.00 (d, J¼ 8.1 Hz, 1H, Ar-H), 7.31 (d, J¼ 8.0 Hz, 1H, Ar-H),
7.60 (s, 1H, Ar-H). 13C NMR (125 MHz, CD3OD). d: 12.98, 19.63,
22.25, 26.24, 27.11, 31.19, 39.39, 109.58, 118.93, 121.98, 132.77,
133.15, 137.77, 141.72, 156.29, 161.13. HRMS calculated for
C16H24N5O: m/z: 302.1975 [M + H]+, found 302.1987.

Compound 8. Yield 88%. 1H NMR (400 MHz, CD3OD) d: 0.90
(t, J ¼ 6.7 Hz, 3H, CH2CH3), 1.30–1.37 (m, 10H, CH2), 1.72 (t, J¼
6.9 Hz, 2H, CH2CH3), 2.38 (s, 3H, Ar-CH3), 3.78 (t, 2H, J¼ 7.1 Hz,
N–CH2), 6.99 (d, J ¼ 8.1 Hz, 1H, Ar-H), 7.31 (m, J ¼ 8.1 Hz, 1H,
Ar-H), 7.60 (s, 1H, Ar-H). 13C NMR (125 MHz, CD3OD). d: 13.07,
19.63, 22.34, 26.53, 27.10, 28.91, 28.95, 31.58, 39.39, 109.60,
118.92, 121.99, 132.77, 133.15, 137.77, 141.71, 156.28, 161.13.
HRMS calculated for C18H28N5O: m/z: 330.2288 [M + H]+, found
330.2300.

Compound 9. Yield 81%. 1H NMR (400 MHz, CD3OD) d: 0.91
(t, J ¼ 7.0 Hz, 3H, CH2CH3), 1.29–1.38 (m, 14H, CH2), 1.73 (t, J¼
6.7 Hz, 2H, CH2), 2.39 (s, 3H, Ar-CH3), 3.79 (t, 2H, J ¼ 7.1 Hz, N–
CH2), 7.00 (d, J¼ 8.0 Hz, 1H, Ar-H), 7.32 (d, J¼ 8.0 Hz, 1H, Ar-H),
7.61 (s, 1H, Ar-H). 13C NMR (125 MHz, CD3OD). d: 13.10, 19.63,
22.38, 26.50, 27.08, 28.91, 29.08, 29.24, 29.26, 31.71, 39.39,
109.60, 118.94, 121.98, 132.76, 133.15, 137.76, 141.71, 156.31,
161.14. HRMS calculated for C20H32N5O:m/z: 358.2601 [M + H]+,
found 358.2616. HPLC analysis [mobile phase 10% (v/v) water in
methanol]: retention time ¼ 9 min; purity > 90%.

Compound 10. Yield 80%. 1H NMR (400 MHz, CD3OD) d:
0.91 (t, J ¼ 7.0 Hz, 3H, CH2CH3), 1.28–1.37 (m, 16H, CH2), 1.72
(t, J ¼ 6.6 Hz, 2H, CH2), 2.38 (s, 3H, Ar-CH3), 3.78 (t, 2H, J ¼
7.1 Hz, N–CH2), 6.99 (d, J¼ 8.0 Hz, 1H, Ar-H), 7.31 (d, J¼ 8.0 Hz,
1H, Ar-H), 7.60 (s, 1H, Ar-H). 13C NMR (125 MHz, CD3OD). d:
13.11, 19.65, 22.39, 26.50, 27.09, 28.92, 29.12, 29.24, 29.30,
29.36, 31.71, 39.38, 109.56, 119.03, 121.93, 132.66, 133.10,
137.64, 141.63, 156.50, 161.08. HRMS calculated for C20H32N5O:
m/z: 372.2758 [M + H]+, found 372.2775.

Compound 11. Yield 83%. 1H NMR (400 MHz, CD3OD) d:
0.91 (t, J ¼ 7.0 Hz, 3H, CH2CH3), 1.29–1.38 (m, 22H, CH2), 1.73
(t, J ¼ 6.9 Hz, 2H, CH2), 2.38 (s, 3H, Ar-CH3), 3.79 (t, 2H, J ¼
7.1 Hz, N–CH2), 7.00 (d, J¼ 8.0 Hz, 1H, Ar-H), 7.31 (d, J¼ 8.0 Hz,
1H, Ar-H), 7.60 (s, 1H, Ar-H). 13C NMR (125 MHz, CD3OD). d:
13.10, 19.63, 22.40, 26.50, 27.09, 28.91, 29.13, 29.23, 29.29,
29.38, 29.42, 31.74, 39.39, 109.60, 118.96, 121.97, 132.76,
133.13, 137.78, 141.72, 156.34, 161.14. HRMS calculated for
C24H40N5O: m/z: 414.3227 [M + H]+, found 414.3245.

Compound 12. Yield 75%. 1H NMR (400 MHz, CD3OD) d:
0.91 (t, J ¼ 7.0 Hz, 3H, CH2CH3), 1.29–1.37 (m, 14H, CH2), 1.72
(t, J ¼ 7.0 Hz, 2H, CH2), 2.38 (s, 3H, Ar-CH3), 3.78 (t, 2H, J ¼
7.1 Hz, N–CH2), 6.96 (d, J¼ 8.0 Hz, 1H, Ar-H), 7.26 (d, J¼ 7.6 Hz,
1H, Ar-H), 7.55 (s, 1H, Ar-H). 13C NMR (125 MHz, CD3OD). d:
13.10, 19.65, 22.38, 26.49, 27.13, 28.90, 29.06, 29.22, 29.24,
31.71, 39.25, 109.34, 119.60, 121.22, 131.69, 132.37, 132.80,
141.20, 161.28, 180.00. HRMS calculated for C20H31N4OSNa: m/
z: 397.2038 [M + Na]+, found 397.2041.
3.4. Antimicrobial susceptibility tests

The MIC values of the compounds (compound 1–12) was
measured by antimicrobial susceptibility tests using the broth
microdilution procedure according to the Clinical and
© 2021 The Author(s). Published by the Royal Society of Chemistry
Laboratory Standards Institute (CLSI) guidelines. Cation-
adjusted Mueller Hinton broth (CA-MHB) for S. aureus strain
ATCC 29213 and Mueller Hinton broth (MHB) for antibiotic-
susceptible strains B. subtilis strain 168 and E. coli strain
ATCC 25922 were used in the assays. Cells in exponential phase
of growth were diluted to approximately 5 � 105 cfu mL�1. A
stock solution of each compound were prepared in DMSO.
Serial dilutions of each compound in DMSO and bacteria were
mixed in a 96-well microplate. The nal percentage of DMSO in
the assay was 1% (v/v). Control experiments were performed
with 1% (v/v) DMSO instead of the solution of the compounds.
Aer incubation at 37 �C for 18 h, the OD600 value of the cells
was measured on a microplate reader (Bio-Rad laboratory Ltd.,
UK), and the percentage of bacterial cell inhibition with respect
to the controls calculated. The MIC value was dened as the
lowest compound concentration at which the growth of bacteria
was inhibited by $90%. Three independent assays were per-
formed for each test.

3.5. Lipid II-based in vitro transglycosylation assay

E. coli PBP 1b (13.2 nM) and the compounds (1–12) were pre-
incubated at 30 �C for 5 min in reaction buffer (50 mM
HEPES, pH 7.5 containing 200mMNaCl and 10mMCaCl2) with
additional 0.08% (v/v) decyl PEG, 10% (v/v) DMSO, 15% (v/v)
CH3OH and 2 U mL�1 muramidase. Dansyl-lipid II (working
concentration ¼ 5 mM) was then added into the reaction
mixture, mixed well and incubated at 30 �C for another 5 min.
MoeA (working concentration ¼ 1 mM) was added and incu-
bated for another 10 min to quench the reaction and completely
cleave the produced glycan chain. The mixtures were stored at
�80 �C before HPLC analysis. A 10 mL portion of samples was
injected into an Agilent 1200 series equipped with a Supelco
SAX1 anion-exchange column and eluted using a gradient
elution method [NH4OAc (0.5 M in methanol) to MeOH (10%
isopropanol) from 4% : 96% to 100% : 0%] in 30 min. All
compounds were measured in duplicate, the half maximal
inhibitory concentrations (IC50) of selected compounds were
calculated by GraphPad Prism 8 with the model: Y ¼ 1/(1 +
10((log IC50 � X) � h)) (Y, normalized response; X, log [inhib-
itor]; h, hillslope). Inhibition constants (Ki) were calculated
according to the formula IC50 ¼ Ki(1 + [s]/Km, Km ¼ 1.8 mM)
reported in literature.50,51

3.6. Cell proliferation assays

The normal human cell line BJ cells (ATCC CRL-2522) were
cultured in a medium according to ATCC recommendations. All
culture cell lines were maintained in a humidied culture
chamber at 37 �C and 5% CO2. The cell lines were rst seeded in
a 96-well plate at a density of 5 � 103 cells per well. Aer
incubation for one day, the cells were treated with the medium
containing different concentrations of compounds (2, 9, 12).
Aer 24 h of drug treatment, the culture medium was replaced
with MTT solution (1 mg mL�1) (Invitrogen) and incubated at
37 �C for four hours. Aer incubation, the MTT solution was
replaced with dimethyl sulfoxide (DMSO), and the absorbance
at 570 nm measured with 650 nm as the reference. The cell
RSC Adv., 2021, 11, 18122–18130 | 18127
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viability was determined by dividing the absorbance of treated
cells by the average absorbance of untreated cells. The IC50

values of the compounds (2, 9, and 12) on the normal human
cell line BJ cells (at 95% condence level) were analyzed by the
soware Prism 6.0. Three independent sets of experiments (n ¼
3) were performed for each cell line.
3.7. Molecular modeling

Molecular models between the S. aureus monofunctional GT
(protein PDB code: 3HZS) and isatin analogues was performed
using AutoDock Vina.52 All the 3D coordinates of isatin
analogues were generated by ChemDraw Ultra 8.0 and energy
minimized by Avogadro with Merck Molecular Force Field 94
(MMFF94).53 The protein PDB and ligands MOL2 les were
handled by reported procedures.54 The docking box contained
the whole GT pocket.
4. Conclusions

In conclusion, a series of new isatin derivatives was synthesized
through three-direction modications on the N-1, C-3 and C-5
positions of the isatin scaffold. The structure–activity relation-
ship was investigated in antimicrobial susceptibility tests
against Gram-positive (S. aureus (29213)), Gram-negative (E. coli
(25922)) strains, and methicillin-resistant Staphylococcus aureus
(MRSA (BAA41)) as well as the in vitro enzymatic inhibition
assays with E. coli PBP 1b. It was found that the modications
on these 3 sites are able to maximize the antimicrobial potency
and enzyme inhibitory activities. Two compounds (2 and 9)
were identied as the potential candidates for new antimicro-
bial agent development against bacterial peptidoglycan glyco-
syltransferase. In addition, our cytotoxicity evaluation studies
have shown that the toxicity of the compounds (2, 9, 12) may be
primarily attributed to the guanidine substituent group at the C-
3 site of isatin scaffold, which is also a crucial moiety of the
molecule to achieve good antimicrobial potency against the
three bacterial stains.
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