Issue 5, 2021

Emerging cellulose-derived materials: a promising platform for the design of flexible wearable sensors toward health and environment monitoring

Abstract

The ongoing surge in demand for high-performance wearable sensors for precisely monitoring vital signs of the human body or the surrounding environment has inspired the relentless pursuit of biocompatible and biodegradable advanced materials. Cellulose, as a class of well-known natural biopolymer on the Earth, presents distinctive integrated merits of good biocompatibility and biodegradability, easy processability into diverse material formats, and sustainable production on a large scale, as well as intrinsic shape anisotropy, surface charge/chemistry, and superior physical and mechanical properties. Such unique advantages have driven constant innovations in wearable and smart cellulose-containing sensors in the past few years. With the rapid development of fabrication techniques in material processing and progress in research, cellulose has been engineered into multidimensional architectures including 1D (nanofibers, fibers, and yarns), 2D (paper, films, and fabrics), and 3D (hydrogels, aerogels, foams, and sponges), which are further transformed into electrically conductive carbonaceous materials with tailorable structures and properties. Cellulose-derived materials have been developed as flexible biosupports or biosubstrates, sensing layers, electrodes and active components for wearable sensors by virtue of their favorable and unique material merits. In this review, the recent advances in the development of multidimensional and multifunctional cellulose-derived materials are discussed for wearable sensors toward healthcare and environment monitoring. First of all, the unique hierarchical and chemical structures and properties of cellulose are briefly introduced. Then, we summarize the fabrication strategies for processing cellulose into materials with multidimensional architectures. Additionally, the design and functionality of flexible wearable sensors developed with multidimensional cellulose-derived materials as biosubstrates, electrodes, active layers, and sensing components are presented in detail. In particular, cellulose-based advanced materials for self-powered sensors are also highlighted. Finally, some prospects on the future challenges in this emerging research field of designing cellulose-derived materials for wearable sensors are illustrated. This review may provide insightful inspiration for the design and utilization of cellulosic composites in flexible electronic devices with high-performance.

Graphical abstract: Emerging cellulose-derived materials: a promising platform for the design of flexible wearable sensors toward health and environment monitoring

Article information

Article type
Review Article
Submitted
26 Sep 2020
Accepted
09 Dec 2020
First published
10 Dec 2020

Mater. Chem. Front., 2021,5, 2051-2091

Emerging cellulose-derived materials: a promising platform for the design of flexible wearable sensors toward health and environment monitoring

Q. Fu, C. Cui, L. Meng, S. Hao, R. Dai and J. Yang, Mater. Chem. Front., 2021, 5, 2051 DOI: 10.1039/D0QM00748J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements