Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Nonlinear photonic crystals are capable of highly efficient nonlinear wavefront manipulation, providing a promising platform for compact and large-scale integrated nonlinear devices. However, the current nonlinear encoding methods for nonlinear photonic crystals inherently require a number of disordered and complex microstructures, which are quite challenging in a real fabrication process. Herein we propose and experimentally demonstrate a nonlinear detour phase method for nonlinear wavefront manipulation in nonlinear photonic crystals. With the proposed method, the designed nonlinear detour phase hologram only requires a set of basic building blocks with simple shapes, which are easy to fabricate by using the femtosecond laser writing technique. The second-harmonic hologram is demonstrated by designing the nonlinear detour phase patterns, and the quasi-phase-matching scheme in the second-harmonic holographic imaging process is also discussed. This study conceptually extends the conventional detour phase method into the nonlinear regime, offering new possibilities for compact nonlinear micro-devices with multi-functions.

Graphical abstract: Nonlinear detour phase holography

Page: ^ Top