Issue 5, 2021

Boron carbonitride with tunable B/N Lewis acid/base sites for enhanced electrocatalytic overall water splitting

Abstract

In-depth research on energy storage and conversion is urgently needed; thus, water splitting has become a possible method to achieve sustainable energy utilization. However, traditional carbon material with high graphitization degree exhibits a relatively low electrocatalytic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activity as it is electrochemically inert. In this work, according to the Lewis theory of acids and bases and the density functional theory (DFT) results, which show that the enriched heteroatom of B/N in the boron carbonitride (BCN) system may introduce stronger adsorption strength of OH*/H2O, respectively, we have designed and synthesized self-supporting BCN materials with different enrichment degrees of B/N (B-BCN/N-BCN) using carbon paper as substrate. Furthermore, by adjusting the contents of B and N, the optimum electrocatalytic performance of overall water splitting was obtained in which the onset voltage of water splitting on B-BCN//N-BCN was lower than 1.60 V. Our strategy of synthesizing materials with different heteroatom enrichment to improve the electronic environment of materials has opened up new opportunities for developing efficient metal-free electrocatalysts.

Graphical abstract: Boron carbonitride with tunable B/N Lewis acid/base sites for enhanced electrocatalytic overall water splitting

Supplementary files

Article information

Article type
Communication
Submitted
24 Sep 2020
Accepted
28 Dec 2020
First published
29 Dec 2020

Nanoscale, 2021,13, 2849-2854

Boron carbonitride with tunable B/N Lewis acid/base sites for enhanced electrocatalytic overall water splitting

D. Shi, B. Chang, Z. Ai, H. Jiang, F. Chen, Y. Shao, J. Shen, Y. Wu and X. Hao, Nanoscale, 2021, 13, 2849 DOI: 10.1039/D0NR06857H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements