Novel synthesis and catalytic performance of hierarchical MOR†
Abstract
A novel route was developed to synthesize hierarchical MOR through introduction of BEA/MOR zeolite embryos as the structural growth inducer (SGI) in the presence of hexadecyltrimethylammonium (CTA+). The morphologies, physicochemical properties and possible formation mechanism of the hierarchical MOR were studied systematically. In the process of crystallization, CTA+ might act as a crystal growth inhibitor for the formation of BEA zeolite; therefore, the MOR embryos have the chance to induce the growth of MOR. Besides, CTA+ ions interact with the primary crystals formed and result in the formation of mesopores. Through changing the addition of CTAB and SGI, the crystal sizes, the mesopore volume and the acidity of the hierarchical MOR could be adjusted. Compared with commercial MOR, the catalytic stability of the hierarchical MOR is much higher in the carbonylation of dimethyl ether.