Oxidative cleavage of cycloalkenes using hydrogen peroxide and a tungsten-based catalyst: towards a complete mechanistic investigation†
Abstract
The identification of the intermediates and by-products produced during the oxidative cleavage of cycloalkenes in the presence of H2O2 and a tungsten-based catalyst for the production of dicarboxylic acids has been carried out under various experimental conditions. On the basis of this mechanistic investigation and previous studies from the literature, a complete reaction scheme for the formation of the reaction products and by-products is proposed. In this hypothetical mechanism, the production of a hydroperoxyalcohol intermediate accounts for the two pathways proposed by Noyori and Venturello for the formation of the targeted dicarboxylic acid. In addition, Baeyer–Villiger oxidation of the mono-aldehyde intermediate allows explaining the formation of short chain diacids observed as by-products during the reaction. Hence, the proposed mechanism constitutes a real tool for scientists looking for a better understanding and those heading to set up environmentally friendly conditions for the oxidative cleavage of cycloalkenes.