Issue 13, 2021

Development of a novel starch-based dietary fiber using glucanotransferase

Abstract

In this study, a glucanotransferase from prokaryotic Azotobacter chroococcum NCIMB 8003 was recombinantly expressed and its biochemical characteristics and bioconversion ability for starch were investigated. The purified enzyme has the optimum activity at 55 °C and pH 6.5–7.0, as well as a melting temperature of 62 °C. The double-charged ion Ca2+ stimulated the activity of the enzyme by approximately 2.4 times. The kinetic parameters and specificity analysis revealed that this glucanotransferase had a higher affinity for high-amylose starch. During the transglycosylation reaction, the starch molecule was converted into a relatively small polymer with a narrow size distribution. For the enzyme modification of high-amylose starch for 72 h, the amount of α-1,6 linkages increased from 1.9% to 22.7% and the content of resistant starch (RS) increased from 3.18% to 17.83%. In addition, the fine structure displayed the reuteran-like highly branched glucan linked by single linear α-1,6 linkages and α-1,4/6 branching points. These results revealed that a promising prebiotic dietary fiber was synthesized from starch with glucanotransferase modification.

Graphical abstract: Development of a novel starch-based dietary fiber using glucanotransferase

Supplementary files

Article information

Article type
Paper
Submitted
28 Jan 2021
Accepted
27 Apr 2021
First published
28 Apr 2021

Food Funct., 2021,12, 5745-5754

Development of a novel starch-based dietary fiber using glucanotransferase

Y. Yang, X. Zhao, T. Zhang, B. R. Hamaker and M. Miao, Food Funct., 2021, 12, 5745 DOI: 10.1039/D1FO00287B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements