
20152 |  Phys. Chem. Chem. Phys., 2021, 23, 20152–20162 This journal is © the Owner Societies 2021

Cite this: Phys. Chem. Chem. Phys.,

2021, 23, 20152

Bayesian phase difference estimation: a general
quantum algorithm for the direct calculation of
energy gaps†
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Quantum computers can perform full configuration interaction (full-CI) calculations by utilising the

quantum phase estimation (QPE) algorithms including Bayesian phase estimation (BPE) and iterative

quantum phase estimation (IQPE). In these quantum algorithms, the time evolution of wave functions

for atoms and molecules is simulated conditionally with an ancillary qubit as the control, which make

implementation to real quantum devices difficult. Also, most of the problems in chemistry discuss

energy differences between two electronic states rather than total energies themselves, and thus direct

calculations of energy gaps are promising for future applications of quantum computers to real

chemistry problems. In the race of finding efficient quantum algorithms to solve quantum chemistry

problems, we test a Bayesian phase difference estimation (BPDE) algorithm, which is a general algorithm

to calculate the difference of two eigenphases of unitary operators in the several cases of the direct

calculations of energy gaps between two electronic states on quantum computers, including vertical

ionisation energies, singlet–triplet energy gaps, and vertical excitation energies. In the BPDE algorithm,

state preparation is carried out conditionally on the ancillary qubit, and the time evolution of the wave

functions in superposition of two electronic states are executed unconditionally. Based on our test, we

conclude that BPDE is capable of computing the energy gap with an accuracy similar to BPE without

controlled-time evolution simulations and with the smaller number of iterations in Bayesian optimisations.

1. Introduction

Quantum computers are believed to have the potential to
revolutionise our lives in many ways. Anticipated applications
of quantum computers range from secure communications,1

financial problems,2 machine learning,3 combinatorial

optimisations,4 and material and drug designs.5 Among the
diverse topics in quantum computing and quantum information
processing, sophisticated quantum chemical calculations of
atoms and molecules are one of the most intensively studied
realms as the near future applications of quantum computers.
In 1929, Dirac pointed out that ‘‘The underlying physical laws
necessary for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble’’.6 The computational
cost for full configuration interaction (full-CI) calculations that
can give variationally best possible wave functions within
the space spanned by the basis set being used increases
exponentially against the system size. However, as Feynman
pointed out, quantum mechanical systems can be efficiently
simulated by using a computer built of quantum mechanical
elements which obey quantum mechanical laws, namely a
quantum computer.7 We note that if quantum computers
are capable of performing sophisticated quantum chemical
calculations of large and complex systems such as the Mn4CaO5

cluster of photosystem II8 and FeMo cofactor of nitrogenase,9 it
will help us deeply understand chemical processes in nature
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and design novel compounds and materials with valuable
functionalities. In fact, quantum computers allow us to calculate
full-CI energy in polynomial time, by utilising a quantum phase
estimation (QPE) algorithm.10 The first theoretical study of the
QPE-based full-CI was reported in 2005,11 and proof-of-principle
experiments of the full-CI/STO-3G calculations of H2 molecules
were reported by using photonic and NMR quantum computers
in 2010.12,13 Since then, many theoretical studies including
quantum gate complexity improvement,14–19 spatial and spin
symmetry adaptation,20–25 qubits and quantum gate resource
estimations17,26,27 as well as experimental demonstrations of
quantum chemical calculations28,29 have been reported. QPE
needs N qubits to readout the eigenphase in N-digits in binary,
while iterative QPE (IQPE)30,31 and Bayesian phase estimation
(BPE),32,33 which are the family of QPE algorithms, use only one
ancillary qubit. In 2014, a quantum–classical hybrid algorithm
known as a variational quantum eigensolver (VQE) was
proposed,34,35 which is capable of computing the energy
expectation values of approximated wave functions using
currently available noisy intermediate-scale quantum (NISQ)
devices.36 Recent reviews in this field can be found
elsewhere.37–41 Although it has been thought that advent of
fault-tolerant quantum computers (FTQC) which have an ability
to perform massive computations with quantum computational
advantages is in the distant future, remarkable progress in
quantum hardware is constantly being made. For example,
two-dimensional quantum walks on a 62-qubit system have been
reported recently,42 and Google Inc. announced that they aim
for commercial-grade quantum computers by 2029.43 In this
context, development of efficient quantum algorithms targeted
at utilising FTQC is an important issue.

Importantly, the computational cost of quantum chemical
calculations on quantum computers increases when we evaluate
the energy in finer digits. This is because QPE calculates the
energy range where the full-CI solution locates, rather than the
full-CI energy itself. Length of the time evolution should be
doubled to half the energy range. Thus, the computational cost
is inversely proportional to the energy precision. In VQE, the
energy expectation value is computed in a statistical manner by
iteratively executing the state preparation and measurements,
and therefore the statistical error is unavoidable. To half the
statistical error of the energy expectation value, one should
quadruple the number of measurements.35,40 From these
reasons, it is quite difficult to precisely calculate the total energy
of large molecules and molecules containing heavy atoms.
Noticeably, we need several theoretical breakthroughs to open
the door to solve real-world chemistry problems, as well as
developments of quantum computing hardware. From the view-
point of computational chemistry, almost all the problems in
chemistry focus on the energy differences between two electronic
states or structures of the molecular systems under study, rather
than the total energies themselves relevant to the systems.
Furthermore, the magnitude of the energy gap to be discussed
is not greatly dependent on the molecular size. We have to
discuss the similar magnitude of energy differences regardless of
the size of molecules. The direct calculation of energy gaps

between two electronic states on quantum computers is one of
the plausible and promising solutions.44–47 Note that several
approaches to calculate excitation energies have been proposed
in VQE, such as subspace expansion,48 subspace search VQE,49

using orthogonality of wave functions,50 and so on. In these
methods energy gaps are calculated by the subtraction of total
energies of individual electronic states.

Recently, we proposed a quantum algorithm ‘‘Bayesian
exchange coupling parameter calculator with broken-symmetry
wave functions (BxB)’’,45 that is capable of directly computing the
energy difference between two electronic states belonging to
different spin quantum numbers. From the numerical quantum
circuit simulations, we demonstrated that the BxB quantum
algorithm is able to predict the exchange coupling parameter J,
which is half of the singlet–triplet energy gap, of small molecules
within 1 kcal mol�1 of precision, with much lower computational
costs than the conventional QPE-based approach.45 We also
carried out numerical simulations for the direct calculations of
vertical ionisation energies using the BxB algorithm, achieving
0.1 eV of energy precision.46 The BxB algorithm is powerful
and applicable to larger systems, and exponential speedup
against classical counterpart is guaranteed. Unfortunately, as
discussed in detail in the next section, the BxB algorithm
has drawbacks. It needs more ancillary qubits to execute
quantum computation, compared with IQPE and BPE, and it cannot
generally be applicable to calculations for any energy gaps. For
example, singlet–singlet excitation energies, which are important
in chemistry, cannot be calculated using the BxB algorithm.

In this work, we propose a new quantum algorithm, ‘‘Bayesian
phase difference estimation (BPDE)’’, whose capability is general
in calculating the difference of two eigenphases of unitary
operators, and apply the BPDE algorithm to direct calculations
of various energy gaps. We emphasise that the number of qubits
needed for implementing the BPDE equals that of IQPE and BPE,
and unlike IQPE and BPE, the BPDE algorithm does not require
any controlled-time evolution operation that is one of the most
difficult parts of quantum algorithms to be implemented to real
devices. Numerical quantum circuit simulations for the direct
calculations of vertical ionisation energies of He, Li, Be, B, C, N,
HF, BF, CF, CO, O2, NO, CN, F2, H2O, NH3, CH4, HCN, and HNC,
singlet–triplet energy gaps of H2, C, O, NH, OH+, NF, NCN, and
CNN, and vertical excitation energies of dihalocarbenes (CX2, X =
F, Cl, and Br), dihalosilylenes (SiX2, X = F and Cl), and formalde-
hyde (HCHO) are given.

2. Theory
2.1 A Bayesian phase estimation (BPE) algorithm for full-CI
calculations on quantum computers

Here we briefly review the theory of quantum chemical calculations
on quantum computers and full-CI calculations using the BPE
algorithm.32

The QPE algorithms including IQPE and BPE are based on the
quantum simulation of the time evolution of wave functions
conditionally on the ancillary qubit and following measurement
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of the ancillary qubit to project the wave function to the eigen-
function of Hamiltonian. The quantum circuit for BPE is
illustrated in Fig. 1. Here, horizontal lines specify a qubit or NSO

of qubits, and squares, circles, and vertical lines represent relevant
quantum gates. NSO is the number of spin orbitals in the active
space. Definitions of the quantum gates and quantum circuits are
given in the ESI.† Tz is the phase shift gate defined in eqn (1).

TzðyÞ ¼
1 0
0 eiy

� �
(1)

In the BPE, an approximate wave function |Ci having
sufficiently large overlap with the full-CI wave function of the
target electronic state is needed as the input. The Hartree–Fock
wave function |CHFi is often used as |Ci for the ground state
calculations of closed shell singlet molecules. By using a Jordan–
Wigner transformation discussed below, |CHFi can be generated
by Nelec of Pauli-X (NOT) gates from the qubits initialised to the
|00� � �0i state. For open shell low-spin states or molecules
with intermediate open shell characters, a symmetry-adapted
configuration state function |CCSFi or a multiconfigurational
wave function |CMCi are suitable for |Ci. |CCSFi and |CMCi can
be prepared using quantum circuits proposed by us.21,22,51 BPE
starts by applying an Hadamard gate (Hd) to the ancillary qubit in
the top of Fig. 1 (eqn (2)). The next step is for the controlled-time
evolution of |Ci. The time evolution operator exp(�iHt) is applied
to |Ci if and only if the ancillary qubit is in the |1i state (eqn (3)).
After that the Tz gate is applied to the ancillary qubit to cause the
phase shift to the |1i state (eqn (4)). The following Hadamard gate
on the ancillary qubit generates the quantum state in eqn (5).

j0i � jCi ��!Hd�1 1ffiffiffi
2
p j0i þ j1ið Þ � jCi (2)

�������!c�expð�iHtÞ 1ffiffiffi
2
p j0i þ e�iEtj1i
� �

� jCi (3)

����!TzðetÞ�1 1ffiffiffi
2
p j0i þ e�i E�eð Þtj1i
� 	

� jCi (4)

��!Hd�1 1

2
1þ e�iðE�eÞt
� 	

j0i � jCi

þ 1

2
1� e�iðE�eÞt
� 	

j1i � jCi
(5)

The probability to obtain the |0i state in the measurement of
the ancillary qubit, P(0), is calculated as in eqn (6).

Pð0Þ ¼ 1

2
½1þ cosfðE � eÞtg� (6)

From eqn (6), the measurement of the ancillary qubit always
gives the |0i state if E = e. In BPE, the rotational angle y = et of
the Tz(y) gate is optimised using Bayesian inference to
maximise P(0). The BPE returns a posterior distribution over
the phase, rather than a point estimate. BPE is robust against
experimental imperfections and noises, and it outperforms
IQPE.32

To adopt BPE for full-CI calculations of atoms and molecules,
the wave functions should be mapped onto qubits. Several wave
function mapping techniques were proposed,52–54 and here we
use the mapping based on the Jordan–Wigner transformation
(JWT).11,52 In the JWT, each qubit stores the occupancy of a
particular spin orbital: the qubit is in the |1i state if the spin
orbital is occupied by an electron, otherwise |0i. A Hamiltonian
for the systems under study is written in the second quantised
formula as in eqn (7), where a†

p and ap are creation and
annihilation operators, respectively, acting on the p-th spin
orbital. hpq and hpqrs are one- and two-electron integrals and
they are computed on classical computers prior to quantum
simulations. In the JWT, a†

p and ap are transformed to the
products of Pauli operators (Pauli strings) using eqn (8) and
(9), respectively. As a result, the molecular Hamiltonian in
eqn (7) is transformed to the qubit Hamiltonian consisting of
a linear combination of Pauli strings, as in eqn (10) and (11).

H ¼
X
p;q

hpqa
y
paq þ

1

2

X
p;q;r;s

hpqrsa
y
pa
y
qaras (7)

ayp ¼
1

2
Xp � iYp

� �
�
Yp�1
u¼1

Zu (8)

ap ¼
1

2
Xp þ iYp

� �
�
Yp�1
u¼1

Zu (9)

H ¼
X
m

wmPm (10)

Pm = sNSO # sNSO�1 #. . .#s1, sk A {I,X,Y,Z} (11)

By applying Trotter–Suzuki decomposition,55,56 the time
evolution operator exp(�iHt) becomes products of the
exponential of Pauli strings (eqn (12)).

expð�iHtÞ �
Y
m

expð�iwmPmt=NÞ
" #N

(12)

The quantum circuit that corresponds to the exponential of a
Pauli string appearing in the time evolution operator can be
constructed by following the literature.57 The quantum circuit
for exp(�iwX1Z2Y3t) is illustrated in Fig. 2 as an example, where
Xp, Yp, and Zp denote Pauli operators acting on the p-th qubit.
Note that in BPE the time evolution operation is executed
conditional on the ancillary qubit. The controlled-
exp(�iwX1Z2Y3t) is realised by substituting the Rz(2wt) gate in

Fig. 1 A quantum circuit for the BPE algorithm. NSO is the number of spin
orbitals in the active space.
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Fig. 2 to the controlled-Rz(2wt) gate, where the control qubit is
the ancillary qubit.

2.2 A BxB quantum algorithm for the direct calculation of
spin state energy gaps

Because quantum computers can utilise quantum superposition
states as their computational resources, it is possible to calculate
the energy difference between two electronic states directly on
quantum computers, by using the wave function approximated
by a superposition of the two electronic states. The BxB quantum
algorithm uses a broken-symmetry wave function |CBSi that is a
mixture of wave functions belonging to different spin quantum
numbers and is used for the calculations of an exchange
coupling parameter J in terms of DFT58–60 as the input. For the
two-spin systems |CBSi is described as in eqn (13).

CBSj i ¼ j2 � � � 2ab0 � � � 0i

¼ 1ffiffiffi
2
p CS¼1;Ms¼0



 �
þ CS¼0;Ms¼0


 �� �

(13)

In the BxB algorithm, the calculation of the spin state energy
gap is achieved by finding the j parameter in the shifted Hamil-
tonian defined in eqn (14), for which |CBSi given in eqn (15)
becomes an eigenfunction of the shifted Hamiltonian H0.

H0 = H + jS2 (14)

CBSj i ¼ 1ffiffiffi
2
p CS¼Saj i þ CS¼Sb



 �� �
(15)

Here, S2 is the spin squared operator giving an eigenvalue S(S +
1), where S denotes a spin quantum number. The eigenvalues
of |CS=Sa

i and |CS=Sb
i under the shifted Hamiltonian H0 are

given in eqn (16) and (17), respectively.

ES=Sa

0 = ES=Sa
+ jSa(Sa + 1) (16)

ES=Sb

0 = ES=Sb
+ jSb(Sb + 1) (17)

By writing the j parameter giving ES=Sa

0 = ES=Sb

0 as jopt, the
spin state energy gap DE is calculated as follows.

DE ¼ ES¼Sb � ES¼Sa

¼ jopt Sa Sa þ 1ð Þ � Sb Sb þ 1ð Þf g
(18)

The quantum circuit for the BxB algorithm is given in Fig. 3.
In the BxB algorithm, the deviation of |CBSi from the eigen-
function of H0 is evaluated by the quantum simulation of the
time evolution of |CBSi under the shifted Hamiltonian H0 and
following a SWAP test.61 The SWAP test consists of the
controlled-SWAP operation that interchanges two quantum
states |fi and |ji if the ancillary qubit is in the |1i state,
flanked by two Hadamard gates on the ancillary qubit, and

ancillary qubit measurement. The probability of obtaining the
|0i state in the measurement is given in eqn (19), and therefore
the square overlap |hf|ji|2 can be efficiently evaluated by the
SWAP test.

P(0) = (1 + |hf|ji|2)/2 (19)

In the BxB quantum algorithm, |fi is exp(�iHt)|CBSi and |ji is
exp{�i(�jS2)t}|CBSi. The probability P(0) becomes a cosine
function whose period is given by DE0t, where DE0 is the energy
gap between the two spin states under the shifted Hamiltonian
H0. By adopting the Bayesian inference to optimise the j
parameter giving a maximum P(0), we can calculate the spin
state energy gap directly, without inspecting the total energies
of individual spin states.

As demonstrated in the preceding papers, the BxB algorithm
can calculate the exchange coupling parameter J defined in
Heisenberg spin Hamiltonian H = �2JijSi�Sj within 1 kcal mol�1

of errors,45 and vertical ionisation energies within 0.1 eV of
precision.46 Also, the BxB algorithm can be extended to other
problems, by replacing the penalty term introduced to the
shifted Hamiltonian from jS2 to other operators such as a

number operator of electrons jNelec ¼ j
P
p

aypap. However, any

operators cannot be used as the penalty term in the BxB
algorithm. It should commute with the original Hamiltonian
H, otherwise the introduction of the penalty term changes the
shape of eigenfunctions. Also, the eigenvalues of the penalty
operator must be known. The two electronic states to calculate
the energy gap should have different eigenvalues of the penalty
operator. Operators satisfying these conditions are very rare,
and thus the application of the BxB algorithm is limited. For
example, the BxB algorithm can calculate the singlet–triplet
energy gaps but it cannot compute singlet–singlet excitation
energies. Furthermore, because the BxB algorithm uses the
SWAP test, the number of qubits required for implementation
is approximately doubled from the conventional QPE-based
full-CI. It is highly desirable to overcome these shortcomings
and to develop a new quantum algorithm enabling us to
generally calculate any energy gaps. In the next section, we will
introduce a new quantum algorithm, Bayesian phase difference
estimation (BPDE), as a general algorithm capable of computing
the differences of two eigenphases of unitary operators.

2.3 A Bayesian phase difference estimation (BPDE) algorithm

Let us rethink the reason why QPE algorithms including IQPE
and BPE are difficult to implement on real quantum devices.
Obviously, the biggest reason is that the quantum circuit for the
time evolution is so deep that quantum error corrections are

Fig. 2 A quantum circuit for the time evolution operator exp(�iwX1Z2Y3t).

Fig. 3 A quantum circuit for the BxB algorithm.
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necessary to obtain meaningful computational results. Another
reason is that QPE needs the controlled-time evolution
operation. As discussed above, the controlled-time evolution
requires many controlled-Rz gates with the same control qubit
but different target qubits. Some quantum devices like those
based on superconducting circuits can execute two qubit gates
between physically connected qubits only. In order to
implement the controlled-Rz gate to two qubits which are not
physically connected, one has to construct a SWAP network to
exchange the quantum states of the neighbouring qubits, so
that the two qubits that the controlled-Rz gate acts on are placed
next to each other. The SWAP network requires O(NSO) of
additional gates, where we used a big-Oh notation to represent
quantum gate complexity. Even if all qubits are fully connected,
one has to minimise the crosstalk errors of the controlled-Rz

gates. It is useful if QPE can be implemented without
controlled-time evolution operations.

Again, let us rethink the mechanism of QPE algorithms.
It calculates the phase shift caused by the time evolution of
wave functions and readout the eigenphase by means of inverse
quantum Fourier transformation (QPE) or Bayesian inference
(BPE). The controlled-time evolution is introduced to calculate
the phase difference of wave functions before and after the time
evolution. However, it is possible to calculate the energy
difference of two electronic states by simulating the time
evolution of the wave function in the quantum superposition
of the two electronic states without controlled operations, if we
can prepare the quantum superposition of the two electronic
states conditional to the quantum state of the ancillary qubit.
This is the key idea in the quantum algorithms for direct
calculations of energy gaps.44–47

The quantum circuit for the BPDE algorithm is given in
Fig. 4. The quantum circuit consists of one ancillary qubit and
NSO of qubits storing the wave function. Here, |C0i can be
any (approximated) eigenfunction of Hamiltonian H. Unless
otherwise specified, we assume that |C0i is the approximated
wave function of the electronic ground state. The quantum
circuit starts with an Hadamard gate on the ancillary qubit to
generate the superposition of the |0i and |1i states. The
following controlled-Excit gate (denoted by c-Excit in eqn (20))
applies an excitation operator to the wave function |C0i if and
only if the ancillary qubit is in the |1i state. This operation
generates the superposition of the ground and excited states as
given in the right hand side of eqn (20), and subsequent time
evolution operation and inverse-controlled-Excit operation
transform the quantum state as in eqn (21) and (22),
respectively. The next step is application of the phase shift gate
Tz to the ancillary qubit, giving the quantum state in eqn (23).
By applying another Hadamard gate on the ancillary qubit, the
quantum state before the measurement in Fig. 4 is given as

eqn (24).

1ffiffiffi
2
p j0i þ j1ið Þ � C0j i ���!c-Excit 1ffiffiffi

2
p j0i � C0j i þ j1i � C1j ið Þ (20)

�����!expð�iHtÞ 1ffiffiffi
2
p j0i � e�iE0t C0j i þ j1i � e�iE1t C1j i
� �

(21)

���!c-Excity 1ffiffiffi
2
p e�iE0tj0i þ e�iE1tj1i
� �

� C0j i (22)

�����!TzðDetÞ�1 1ffiffiffi
2
p e�iE0tj0i þ e�i E1�Deð Þtj1i
� 	

� C0j i (23)

��!Hd�1 1

2
e�iE0t þ e�i E1�Deð Þt
� 	

j0i � C0j i

þ 1

2
e�iE0t � e�i E1�Deð Þt
� 	

j1i � C0j i
(24)

The probability to obtain the |0i state in the measurement of
the ancillary qubit can be calculated as in eqn (25).

Pð0Þ ¼ 1

2
1þ cos E1 � E0 � Deð Þtf g½ � (25)

From eqn (25), it is clear that the measurement of the
ancillary qubit always gives the |0i state if E1 � E0 = De. Thus,
the energy gap between the two electronic states can be
calculated by optimising the phase shift angle Det by means
of Bayesian inference. The BPDE algorithm does not need a
penalty operator and is capable of computing the difference of
two eigenphases of unitary operators, if one can conditionally
generate the superposition of two eigenfunctions. It should be
emphasised that application of the BPDE algorithm is not
limited to quantum chemical calculations, but to a wide variety
of eigenvalue problems. Another merit of the BPDE algorithm
against BxB is that the P(0) given in eqn (25) varies between 0
and 1, although P(0) in the BxB algorithm is given as P(0) = [3 +
cos{(E1 � E0 � De)t}]/4,45 and thus it takes a value between 0.5
and 1. Thus, the range of the possible value for P(0) is wider in
BPDE than in BxB, and the variation of P(0) by changing De
becomes more apparent.

Note that the BPDE algorithm needs only one ancillary
qubit, which is the same in IQPE and BPE. Importantly, both
IQPE and BPE require controlled-time evolution operations but
BPDE is free from them. In BPDE, the controlled operations
appear in the state preparation (controlled-Excit) and inverse
state preparation (controlled-Excit†). The controlled-Excit
generates the excited state wave function conditionally, and
therefore the quantum circuit for the controlled-Excit has the
depth similar to that used for the state preparation in conven-
tional QPE-based approaches. Importantly, we do not have to
prepare the exact eigenfunction of a target electronic state in
QPE, and preparation of the approximate wave function having
sufficiently large overlap with the target electronic state is
enough. The situation is the same in the BPDE algorithm, and
we can calculate the energy gap correctly if the controlled-Excit
can conditionally generate the wave function having largeFig. 4 A quantum circuit for the BPDE algorithm.
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overlap with the target excited state. Thus, the quantum circuit for
the controlled-Excit is usually very shallow and implementation of
BPDE is much easier than IQPE and BPE those need controlled-
time evolution operations. It should be also noted that the phase
difference estimation algorithm described here can be easily
extended to the IQPE scheme.

3. Results and discussion

To demonstrate the usefulness of the BPDE algorithm,
we developed numerical quantum circuit simulation programs
using Python with OpenFermion62 and Cirq63 libraries, and
carried out numerical simulations for the direct calculations of
vertical ionisation energies, singlet–triplet energy gaps, and
vertical excitation energies. We also calculated the energy gaps
using a naı̈ve approach to compute total energies of individual
electronic states by two separate BPE simulations and
subtract them. The simulations were performed five times for
each system. Details of computational procedures and conditions
for the numerical simulations of BPDE and BPE are given in the
ESI.†

3.1 Vertical ionisation energies

Accurate calculations of ionisation energies are important to
understand electron transfer and oxidation processes in
chemical reactions and nature of chemical bonding. As we
demonstrated in the preceding paper, direct calculations of
vertical ionisation energies are possible by using the BxB
algorithm.45 Here, we adopt the BPDE algorithm to calculate the
vertical ionisation energies of CH4, HCN, and HNC molecules as
well as 16 chemical species (He, Li, Be, B, C, N, HF, BF, CF, CO,
O2, NO, CN, F2, H2O, and NH3) studied previously by using the
BxB algorithm.46 In order to calculate the vertical ionisation
energies with the BPDE algorithm, we set the starting wave
function |C0i to be RHF/6-311G(d,p) or the ROHF/6-311G(d,p)
wave function for closed shell and open shell species, respectively,
of the neutral state. The largest systems under study are HCN and
HNC with (10e, 9o) active spaces, those corresponding to 19 qubit
quantum circuit simulations (18 qubits for the wave function
storage and one ancillary qubit). Under the JWT, the controlled-
Excit gate is realised by a CNOT gate with the ancillary qubit as the
control and the qubit storing the occupation number of spin
orbitals of which electron ionisation occurs as the target. We used
the ionisation energy at the DSCF level, IE(DSCF) = EHF(cation) �
EHF(neutral), as the initial estimate of the vertical ionisation
energies.

The difference of the vertical ionisation energies from the
quantum circuit simulations and that from the CAS-CI
calculations are plotted in Fig. 5, and the values of the BPDE,
BPE, and CAS-CI ionisation energies in conjunction with
experimental ones are summarised in Table S2 in the ESI.†
For all chemical species under study, both the BPDE and BPE
algorithms reproduced the CAS-CI ionisation energy within
0.1 eV of errors. The ionisation energies computed by using
BPDE and BPE are very close to each other, revealing that the

accuracy of the vertical ionisation energy is almost the same
between the direct calculation and naı̈ve approach. In the HF
molecule, both BPE and BPDE exhibit large deviations from the
CAS-CI values. The deviation can be rationally explained by the
errors arising from Trotter decomposition. In fact, the deviation
from the CAS-CI value systematically improves by increasing the
number of Trotter slices, and it becomes 0.004 eV if we use five
times larger the number of Trotter slices in the calculation of HF
molecule (see the ESI† for details).

The BPDE simulation converges after eight optimisation
cycles in all atoms and molecules under study, and thus
the number of iterations does not depend on the system size.
This is because BPDE optimises the energy difference directly.
By contrast, in BPE the number of Bayesian optimisation
cycles increases as the system size. For example, BPE
optimisation of the neutral and cationic states of F2 takes 11
iterations. System size independence in the Bayesian
optimisation in the BPDE algorithm cannot be overempha-
sised. This feature becomes more important in the calculations
of larger molecules and molecules containing heavier atoms, as
discussed in the excitation energy calculations of CBr2 (see
Section 3.3).

3.2 Singlet–triplet energy gaps

Next we applied the BPDE algorithm to the direct calculations
of singlet–triplet energy gap DES–T. The singlet–triplet energy
gap is the most important physical quantity in biradicals. The
DES–T of biradicals are usually in the order of a few kcal mol�1

or less, and accurate calculations of DES–T using quantum
computers are very cost demanding. In this study, we focused
on the covalent bond dissociation of the H2 molecule at the
full-CI/STO-3G level, and atoms and small molecules including
C, O, NH, OH+, NF, NCN, and CNN at the CAS-CI/6-311G(d,p)
level. CAS-CI active spaces are summarised in the ESI.† For the
calculation of the singlet–triplet energy gap, we used the |CCSFi
of the MS = 0 of the spin-triplet state given in eqn (26) as |C0i,
and the spin-singlet state given in eqn (27) is assigned to the
excited state |C1i. In this formulation, DES–T becomes negative

Fig. 5 Differences between the vertical ionisation energies from the
quantum circuit simulations and those from the CAS-CI calculations for
chemical species under study.
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if the spin-singlet state has lower energy than the spin-
triplet state.

CS¼1;Ms¼0


 �

¼ 1ffiffiffi
2
p ðj2 � � � 2ab0 � � � 0i þ j2 � � � 2ba0 � � � 0iÞ (26)

CS¼0;Ms¼0


 �

¼ 1ffiffiffi
2
p ðj2 � � � 2ab0 � � � 0i � j2 � � � 2ba0 � � � 0iÞ (27)

By setting |C0i and |C1i as described above, the controlled-
Excit operation becomes a controlled-Z gate with the
ancillary qubit as the control and one of the qubits storing
the occupation number of singly occupied molecular orbitals
(SOMOs) as the target. See the ESI† for details of the state
preparations.

The results of the numerical quantum circuit simulations
and the CAS-CI calculations are summarised in Fig. 6, and the
DES–T values calculated at the BPDE, BPE, and CAS-CI methods
are given in Tables S4 and S6 in the ESI.† From Fig. 6, both the
BPE and BPDE succeed in predicting DES–T within 2 kcal mol�1

of errors in all systems under study. This corresponds to
1 kcal mol�1 of energy precision in the exchange coupling
parameter J used in our preceding paper.45 Departures of the
DES–T(BPE) and DES–T(BPDE) from the CAS-CI value are large
for the H2 molecule with the interatomic distance R(H� � �H) r
1.5 Å, but again this large deviation is mainly caused by the
Trotter decomposition (see the ESI†). Another reason is that the
spin-singlet wave function is not well approximated by |C1i.
For shorter H� � �H distances contribution of the closed shell
singlet electronic configuration to the full-CI wave function
becomes significant, and therefore contributions from other
electronic states to |C1i are not negligible. As a result, the
likelihood function becomes a linear combination of many
cosine functions and P(0) becomes flattened. Adopting multi-
configurational wave functions constructed by using diradical
character y for |C1i using the quantum circuit proposed by us51

is a promising approach to improve the DES–T values, which is
out of focus of this paper.

3.3 Vertical excitation energies

Finally, we applied the BPDE algorithm to calculations of
vertical excitation energies. These calculations were impossible
by using the BxB algorithm, although it is essential to
theoretically assign electronic transitions of the UV-vis spectra.
In this study, we calculated the S0 - S1 and S0 - T1 excitation
energies of dihalocarbenes (CX2, X = F, Cl, and Br) and
dihalosilylenes (SiX2, X = F and Cl), and vertical excitation
energies of the valence excited states of formaldehyde (HCHO).
Active spaces for the CAS-CI calculations of dihalocarbenes and
dihalosilylenes are provided as Fig. S9–S13 in the ESI,† and that
of formaldehyde is given in Fig. 7.

To calculate the excitation energies from the closed shell
singlet ground state, we have to apply the symmetry-adapted
excitation operators as the controlled-Excit gate. Spin-singlet
and triplet states can be obtained by using the excitation
operators Tja given in eqn (28) and (29), respectively, where j
and a represent occupied and unoccupied molecular orbitals in
the ground state, respectively.

TjaðsingletÞ ¼
1ffiffiffi
2
p ayaaaja þ a

y
abajb

� 	
(28)

TjaðtripletÞ ¼
1ffiffiffi
2
p ayaaaja � a

y
abajb

� 	
(29)

The quantum circuits for the controlled-Excit gates are
illustrated in Fig. S16 in the ESI.†

The calculated vertical excitation energies are summarised
in Table 1. In Table 1, the BPE and BPDE excitation energies are
given as the average of five numerical simulations. The 1 1B1

and 1 3B1 excited states of dihalocarbenes and dihalosilylenes
are attributed to spin-allowed and spin-forbidden (spin–flip)
HOMO - LUMO one electron transitions, respectively.
In formaldehyde, the 1 1A2, 1 1B1, and 2 1A1 excited states are
described mainly by the (2b2 - 2b1), (5a1 - 2b1), and (1b1 -

2b1) electron excitations, respectively. The calculated excitation
energies are overestimated from the experimental values due to
lack of dynamical electron correlation effects. The excitation
energies obtained from the BPE and BPDE quantum circuit
simulations agree to the CAS-CI value within ca. 0.1 eV of

Fig. 6 Differences between the singlet–triplet energy gaps from the
quantum circuit simulations and those from the CAS-CI calculations. (a)
H2 molecule with different atom–atom distances. (b) Atoms and other
molecules under study. Fig. 7 CAS-CI active space of formaldehyde.
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errors, exemplifying the accuracy of the BPE and BPDE
algorithms.

As discussed above, the number of the iterations in the
Bayesian optimisation does not depend on the system size in
BPDE, although it strongly depends on the magnitude of total
energy in BPE. This behaviour can be clearly seen in the
calculation of CBr2. The CAS-CI(10e,6o)/6-31G* energy of the
electronic ground state of CBr2 is �5181.9601544990 Hartree.
BPE gives the ground state energy to be �5181.9600265599
Hartree (the average value of five runs). Error of the total energy
is about 0.0035 eV and thus very small, but BPE simulations
need 16 iterations to achieve the convergence. Note that in this
study we used the 0.05 of Hartree–Fock energy as the initial
variance of the Gaussian function (a prior distribution). Using
tighter initial variance can accelerate the Bayesian optimisation.
By contrast, the BPDE simulation converges after 8 iterations.
Direct calculations of the energy gap are beneficial to reduce the
computational costs related to Bayesian optimisations.

4. Conclusions

In this work, we examined the Bayesian phase difference
estimation (BPDE) algorithm, which is a general quantum
algorithm capable of computing the difference of two eigen-
phases of unitary operators, in several cases of direct calculations
of energy gaps including vertical ionisation energies, singlet–
triplet energy gaps, and vertical excitation energies. The BPDE
algorithm is free from the controlled-time evolution operation
that is necessary for putative QPE algorithms, and the number of
qubits required for the implementation equals those in the
IQPE and BPE algorithms. The BPDE algorithm is easier to be
implemented on quantum devices than the BPE, and the accuracy
of the energy gaps is comparable to the naı̈ve approach based on
two separate BPE quantum simulations. One of the most
important features of the BPDE algorithm against the conven-
tional BPE is that the number of iterations in the Bayesian
optimisation to achieve the convergence does not depend on
the system size, although it increases in BPE when the magnitude

of the total energy becomes large. Direct calculations of energy
gaps are also promising in terms of reducing the computational
cost of Bayesian optimisation.

We emphasise that the usage of the BPDE algorithm is not
limited to quantum chemical calculations. It is applicable to
other unitary operators and therefore various applications can
be anticipated. Even if we restrict ourselves to the topics of
quantum chemical calculations, we can expect a variety of
possible applications such as core ionisations, core excitations,
Rydberg excitations, and charge-transfer excitations. Connection
of the BPDE algorithm to the sophisticated methods for the wave
function preparation such as multiconfigurational wave function
preparations using diradical characters51 and adiabatic state
preparation68,69 is another important extension of the algorithm.
These applications potentially open the door to apply quantum
computers to real-world chemistry problems.

Author contributions

K. Sugisaki, K. Sato, and T. Takui planned and conducted the
project. K. Sugisaki proposed the theory. K. Sugisaki and
C. Sakai performed quantum chemical calculations and
numerical simulations. All the other authors discussed the
results. K. Sugisaki and T. Takui wrote the paper.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by JST PRESTO ‘‘Quantum Software’’
project (Grant No. JPMJPR1914), Japan, and KAKENHI
Scientific Research C (Grant No. 18K03465) from JSPS, Japan.
This work was also supported by AOARD Scientific Project on
‘‘Molecular Spins for Quantum Technologies’’ (Grant FA2386-
17-1-4040, 4041), USA, and JSPS KAKENHI Scientific Research C
(21K03407), Japan.

Notes and references

1 F. Grasselli, Quantum Cryptography. From Key Distribution to
Conference Key Agreement, Springer, Switzerland, 2021.

2 R. Orús, S. Mugel and E. Lizaso, Quantum computing for
finance: Overview and prospects, Rev. Phys., 2019, 4, 100028.

3 M. Schuld and F. Petruccione, Supervised Learning with
Quantum Computers, Springer, Switzerland, 2018.

4 Y. R. Sanders, D. W. Berry, P. C. S. Costa, L. W. Tessler,
N. Wiebe, C. Gidney, H. Neven and R. Babbush, Compila-
tion of fault-tolerant quantum heuristics for combinatorial
optimization, PRX Quantum, 2020, 1, 020312.

5 Y. Cao, J. Romero and A. Aspuru-Guzik, Potential of quantum
computing for drug discovery, IBM J. Res. Develop., 2018, 62, 6.

6 P. A. M. Dirac, Quantum mechanics of many-electron sys-
tems, Proc. R. Soc. London, Ser. A, 1929, 123, 714–733.

Table 1 Vertical excitation energies of dihalocarbenes, dihalosilylenes,
and formaldehyde

Molecule Excited state

Excitation energy/eV

BPE BPDE CAS-CI Exptl.

CF2 1 1B1 6.200 6.199 6.143 4.615a

1 3B1 3.060 3.062 2.999 2.458a

CCl2 1 1B1 3.188 3.186 3.191 2.139a

1 3B1 1.354 1.362 1.360 0.9(2)b

CBr2 1 1B1 2.745 2.747 2.755 1.871a

1 3B1 1.205 1.208 1.219 N.A.c

SiF2 1 1B1 6.622 6.622 6.643 5.469a

1 3B1 3.639 3.651 3.663 3.262a

SiCl2 1 1B1 4.689 4.686 4.689 3.721a

1 3B1 2.640 2.638 2.639 2.349a

HCHO 1 1A2 5.292 5.297 5.359 4.1d

1 1B1 10.467 10.466 10.525 8.6–9.0e

2 1A1 11.586 11.603 11.692 10.7d

a Ref. 64. b Ref. 65. c Not available. d Ref. 66. e Ref. 67.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Se

pt
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

0/
6/

20
24

 1
1:

13
:1

0 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D1CP03156B


20160 |  Phys. Chem. Chem. Phys., 2021, 23, 20152–20162 This journal is © the Owner Societies 2021

7 R. P. Feynman, Simulating physics with computers, Int.
J. Theor. Phys., 1982, 21, 467–488.

8 Y. Umena, K. Kawakami, J.-R. Shen and N. Kamiya, Crystal
structure of oxygen-evolving photosystem II at a resolution
of 1.9 Å, Nature, 2011, 473, 55–60.

9 T. Spatzal, J. Schlesier, E.-M. Burger, D. Sippel, L. Zhang,
S. L. A. Andrade, D. C. Rees and O. Einsle, Nitrogenase
FeMoco investigated by spatially resolved anomalous dis-
persion refinement, Nat. Commun., 2016, 7, 10902.

10 D. S. Abrams and S. Lloyd, Quantum algorithm providing
exponential speed increase for finding eigenvalues and
eigenvectors, Phys. Rev. Lett., 1999, 83, 5162–5165.

11 A. Aspuru-Guzik, A. D. Dutoi, P. J. Love and M. Head-
Gordon, Simulated quantum computation of molecular
energies, Science, 2005, 309, 1704–1707.

12 B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin,
M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni,
B. J. Powell, M. Barbieri, A. Aspuru-Guzik and A. G. White,
Towards quantum chemistry on a quantum computer, Nat.
Chem., 2010, 2, 106–111.

13 J. Du, N. Xu, X. Peng, P. Wang, S. Wu and D. Lu, NMR
implementation of a molecular hydrogen quantum simula-
tion with adiabatic state preparation, Phys. Rev. Lett., 2010,
104, 030502.

14 M. B. Hastings, D. Wecker, B. Bauer and M. Troyer, Improv-
ing quantum algorithms for quantum chemistry, Quantum
Inf. Comput., 2015, 15, 1–21.

15 R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love
and A. Aspuru-Guzik, Exponentially more precise quantum
simulation of fermions in second quantization, New J. Phys.,
2016, 18, 033032.

16 R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven and
G. K.-L. Chan, Low-depth quantum simulation of materials,
Phys. Rev. X, 2018, 8, 011044.

17 R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean,
A. Paler, A. Fowler and H. Neven, Encoding electronic
spectra in quantum circuits with linear T complexity, Phys.
Rev. X, 2018, 8, 041015.

18 I. D. Kivlichan, J. McClean, N. Wiebe, C. Gidney, A. Aspuru-
Guzik, G. K.-L. Chan and R. Babbush, Quantum simulation
of electronic structure with linear depth and connectivity,
Phys. Rev. Lett., 2018, 120, 110501.

19 R. Babbush, D. W. Berry, J. R. McClean and H. Neven,
Quantum simulation of chemistry with sublinear scaling
in basis size, npj Quantum Info., 2019, 5, 92.

20 J. D. Whitfield, Spin-free quantum computational simula-
tions and symmetry adapted states, J. Chem. Phys., 2013,
139, 021105.

21 K. Sugisaki, S. Yamamoto, S. Nakazawa, K. Toyota, K. Sato,
D. Shiomi and T. Takui, Quantum chemistry on quantum
computers: A polynomial-time quantum algorithm for con-
structing the wave functions of open-shell molecules,
J. Phys. Chem. A, 2016, 120, 6459–6466.

22 K. Sugisaki, S. Yamamoto, S. Nakazawa, K. Toyota, K. Sato,
D. Shiomi and T. Takui, Open shell electronic state calcula-
tions on quantum computers: A quantum circuit for the

preparation of configuration state functions based on Ser-
ber construction, Chem. Phys. Lett.: X, 2019, 1, 100002.

23 K. Sugisaki, S. Nakazawa, K. Toyota, K. Sato, D. Shiomi and
T. Takui, Quantum chemistry on quantum computers: Quan-
tum simulations of the time evolution of wave functions under
the S2 operator and determination of the spin quantum
number S, Phys. Chem. Chem. Phys., 2019, 21, 15356–15361.

24 K. Sugisaki, K. Toyota, K. Sato, D. Shiomi and T. Takui, A
probabilistic spin annihilation method for quantum
chemical calculations on quantum computers, Phys. Chem.
Chem. Phys., 2020, 22, 20990–20994.

25 K. Setia, R. Chen, J. E. Rice, A. Mezzacapo, M. Pistoia and
J. D. Whitfield, Reducing qubit requirements for quantum
simulations using molecular point group symmetries,
J. Chem. Theory Comput., 2020, 16, 6091–6097.

26 D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings and
M. Troyer, Gate-count estimates for performing quantum
chemistry on small quantum computers, Phys. Rev. A: At.,
Mol., Opt. Phys., 2014, 90, 022305.

27 M. Reiher, N. Wiebe, K. M. Svore, D. Wecker and M. Troyer,
Elucidating reaction mechanisms on quantum computers,
Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 7555–7560.

28 P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero,
J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter,
N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero,
A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana,
D. Sank, A. Vainsencher, J. Wenner, T. C. White,
P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik and
J. M. Martinis, Scalable quantum simulation of molecular
energies, Phys. Rev. X, 2016, 6, 031007.

29 Y. Wang, F. Dolde, J. Biamonte, R. Babbush, V. Bergholm,
S. Yang, I. Jakobi, P. Neumann, A. Aspuru-Guzik,
J. D. Whitfield and J. Wrachtrup, Quantum simulation of
helium hydride cation in a solid-state spin register, ACS
Nano, 2015, 9, 7769–7774.
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