Rational design of organic semiconductors with low internal reorganization energies for hole and electron transport: position effect of aza-substitution in phenalenyl derivatives†
Abstract
Amphoteric-redox phenalenyl radical (PLY) is a suitable candidate used to design ambipolar organic materials. Because the singly occupied nonbonding molecular orbital (NBMO) of PLY has a perfect local nonbonding character, its internal reorganization energy (λ) for transporting holes (λ+) or electrons (λ−) is known to be small. Herein, PLY is employed to study the position effect of the aza group on the λ. By adding or extracting an electron from the NBMO, the bond length alterations can be minute. Therefore, the PLY derivatives are also an excellent candidate to study the contributions from the bond angle alterations to the λ. Substituting the aza groups at the β- or α-positions of PLY shows two different trends. When consecutively substituting the aza group at the three β-positions of PLY, the λs are consistently decreased. Contrarily, a series of double functionalization of aza groups at the four α-positions of PLY, the λs are increased. It is because the local bonding or antibonding character in frontier orbitals (FMO) is observed in α2N-PLY and α4N-PLY. As the FMOs of the three β-substituted PLYs and α6N-PLY have perfect local nonbonding character, we found the bond angle alterations are the main contributors of λ. The λs for most aza-PLYs were smaller than 100 meV. Thus, we propose a design rule for substituting aza groups on the parent molecules with strong local nonbonding character in their FMOs. Based on the adiabatic ionization potential and electron affinity, two π-extended PLY derivatives with small λ were recommended for fabricating air-stable ambipolar OFET.