Issue 41, 2021

Automated reaction mechanisms and kinetics based transition state search process AMK-gau_xtb and its application to the substitution reaction of the nitroso group in 2,4,6-trinitrotoluene by hydroxide anion in the aqueous phase

Abstract

The automated reaction mechanisms and kinetics (AutoMeKin) program evolved from a transition state search using chemical dynamics simulations (TSSCDS). It combines a series of empirical, semi-empirical and ab initio calculation methods to provide a two-step transition state search process from low-level calculation to high-level calculation. However, in this process, with the lack of solution keywords, low-level calculation has the problem of low accuracy or high computational cost. To address this problem, the gau_xtb interface that combines the high efficiency of xTB and the comprehensiveness of Gaussian09 was incorporated into the AutoMeKin2020 in this work and after adding some keywords, the AMK-gau_xtb software was obtained. Meanwhile, to adapt to the interface, the MD sampling results used Quadratic Synchronous Transit 3 (QST3) for the low-level transition state search. As an application, the reaction in which the nitroso group is replaced by hydroxide anion during the alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) in the water phase was studied with AMK-gau_xtb. The results of Intrinsic Reaction Coordinate (IRC) calculations revealed that the reactions on the front side and back side are different, with higher energy barriers obtained for the reactions on the front side. In addition, the hydrogen atom of the hydroxide anion has a slightly higher energy barrier for motion toward the inside of the benzene ring than for motion out of the benzene ring. Examination of the transition state structures of the low-level and high-level results showed that all reactions involve the stretching and restoration of the benzene ring. This process will lead to the incorrect identification of several transition states by the gau_xtb-based low-level calculation, while high-level calculation eliminates these incorrect results. The results of this research showed that AMK-gau_xtb has high efficiency and high fault tolerance, and has potential for use in large-scale system transition state searches.

Graphical abstract: Automated reaction mechanisms and kinetics based transition state search process AMK-gau_xtb and its application to the substitution reaction of the nitroso group in 2,4,6-trinitrotoluene by hydroxide anion in the aqueous phase

Article information

Article type
Paper
Submitted
15 May 2021
Accepted
27 Sep 2021
First published
28 Sep 2021

Phys. Chem. Chem. Phys., 2021,23, 23673-23683

Automated reaction mechanisms and kinetics based transition state search process AMK-gau_xtb and its application to the substitution reaction of the nitroso group in 2,4,6-trinitrotoluene by hydroxide anion in the aqueous phase

G. Zhang, J. Li, B. Long and Z. Liu, Phys. Chem. Chem. Phys., 2021, 23, 23673 DOI: 10.1039/D1CP02144C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements