Issue 21, 2021

A combined experimental and theoretical study of miconazole salts and cocrystals: crystal structures, DFT computations, formation thermodynamics and solubility improvement

Abstract

Experimental and theoretical screening of multi-component crystal forms of miconazole (MCL), an antifungal drug, with ten aliphatic dicarboxylic acids was performed. Seven multi-component molecular crystals were isolated and identified by different analytical techniques, including the powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TG), and solubility methods. The crystal structures of the MCL hemihydrate, two cocrystals with succinic ([MCL + SucAc] (2 : 1)) and fumaric acids ([MCL + FumAc] (2 : 1)) and one salt with maleic acid ([MCL + MleAc] (1 : 1)) were redetermined. The new cocrystal of MCL with adipic acid ([MCL + AdpAc] (2 : 1)) was investigated by single crystal X-ray diffractometry. It was found that the AdpAc molecule in the cocrystal has an unusual anticlinal conformation. The combination of periodic density functional theory (DFT) computations and quantum topology analysis confirmed the structure-directing role of the acid-imidazole heterosynthon for the considered crystals. The melting temperatures of all the studied multi-component crystals are between the values of the corresponding individual components except [MCL + MleAc] (1 : 1). A thermal analysis has shown that the thermodynamic and thermophysical characteristics of the considered two-component molecular crystals are strongly dependent both on specific interactions (presence of sites of donor–acceptor interactions and hydrogen bond formation) and on nonspecific interactions – molecule polarizability. Based on the sublimation thermodynamics database of molecular crystals, the standard sublimation thermodynamic functions of MCL were evaluated. The thermodynamic functions of multi-component crystal formation based on MCL were calculated and analyzed. Solubility experiments on the MCL multi-component crystals were carried out in isotonic aqueous buffer solutions at pH 1.2 and 6.8 and compared with the solubility of the MCL free base and its nitrate salt. It was found that the salt/cocrystal formation of MCL with dicarboxylic acids considerably increased the MCL solubility in pH 6.8 buffer. The biggest MCL solubility enhancement was observed in the [MCL + TartAc] (1 : 1) salt. The solubility value of MCL in the [MCL + TartAc] (1 : 1) salt is commensurate with the commercial MCL nitrate salt.

Graphical abstract: A combined experimental and theoretical study of miconazole salts and cocrystals: crystal structures, DFT computations, formation thermodynamics and solubility improvement

Supplementary files

Article information

Article type
Paper
Submitted
03 Mar 2021
Accepted
10 May 2021
First published
10 May 2021

Phys. Chem. Chem. Phys., 2021,23, 12456-12470

A combined experimental and theoretical study of miconazole salts and cocrystals: crystal structures, DFT computations, formation thermodynamics and solubility improvement

K. V. Drozd, A. N. Manin, A. P. Voronin, D. E. Boycov, A. V. Churakov and G. L. Perlovich, Phys. Chem. Chem. Phys., 2021, 23, 12456 DOI: 10.1039/D1CP00956G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements