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Non-uniform sampling in pulse dipolar
spectroscopy by EPR: the redistribution of
noise and the optimization of data acquisition†

Anna G. Matveeva, ab Victoria N. Syryamina, c Vyacheslav M. Nekrasov bc

and Michael K. Bowman *de

Pulse dipolar spectroscopy (PDS) in Electron Paramagnetic Resonance (EPR) is the method of choice for

determining the distance distribution function for mono-, bi- or multi- spin-labeled macromolecules

and nanostructures. PDS acquisition schemes conventionally use uniform sampling of the dipolar trace,

but non-uniform sampling (NUS) schemes can decrease the total measurement time or increase the

accuracy of the resulting distance distributions. NUS requires optimization of the data acquisition

scheme, as well as changes in data processing algorithms to accommodate the non-uniformly sampled

data. We investigate in silico the applicability of the NUS approach in PDS, considering its effect on

random, truncation and sampling noise in the experimental data. Each type of noise in the time-domain

data propagates differently and non-uniformly into the distance spectrum as errors in the distance

distribution. NUS schemes seem to be a valid approach for increasing sensitivity and/or throughput in

PDS by decreasing and redistributing noise in the distance spectrum so that it has less impact on the

distance spectrum.

Introduction

Pulse dipolar spectroscopy (PDS) by Electron Paramagnetic
Resonance (EPR) is a set of pulse EPR techniques with applications
in a wide range of fields, e.g., polymers, biomacromolecules,
biology and nanomaterials.1,2 A noteworthy feature of PDS is its
ability to extract the distance distribution function between pairs
of paramagnetic centers (PCs) with separations in the range of
1.5–16 nm. Many approaches have been described to extract the
distance distribution.3–14 But no implementation is recognized as
clearly superior; although the Tikhonov regularization method in
DeerAnalysis5 is a convenient benchmark for comparisons.

The PDS signal, denoted here as V(T), is also known as the
dipolar trace or dipolar decay. In principle, it is the time

domain lineshape of the dipolar interaction within pairs of
PCs. The dipolar trace is measured by several PDS methods:
PELDOR/DEER, DQC, SIFTER or RIDME. For isolated PC pairs
having a distance distribution function P(r), the dipolar trace is
usually written as a Fredholm integral of the first kind:2,15,16

VðTÞ ¼
ð1
0

PðrÞ
ð1
0

cos
gAgBm2�hT

r3
1� 3x2
� �� �

dxdr; (1)

where gA, gB are the g-factors of the observed PC and its
PC-partner, m is the Bohr magneton, �h is Planck’s constant,
and x = cos(y) is the cosine of the angle between the external
magnetic field and the vector connecting the pair of PCs.
Eqn (1) contains the implicit assumptions that PC pairs con-
tribute to the dipolar trace independent of their orientation x and
distance r and furthermore that x is uncorrelated with r. The
quantity gAgBm

2�h/r3 in eqn (1) is often called the dipolar frequency
oD. The dipolar trace is a continuous signal, starting from unity
and converging to 0 at infinite time, sometimes having several
oscillations around zero with a period BTD = 2p/oD.

V(T) is easily calculated from the distance distribution P(r)
via eqn (1). However, the analysis of a PDS measurement
requires the inverse: calculation of the distance distribution
from an experimental measurement of the dipolar trace, and
that presents a major difficulty. The inverse solution of the
Fredholm integral in eqn (1) is well-known in mathematics as
an ill-posed problem. According to the Hadamard criterion,
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this means that even a slight perturbation of the dipolar trace
can produce a very different distance distribution.

Every experimental PDS measurement contains many per-
turbations, collectively known as noise s(T), arising for several
reasons. For instance, there is the ‘random’ noise inherent in
every physical measurement. Random noise can be reduced by
signal averaging but can’t be eliminated. Also, every PDS
measurement takes samples of the continuous dipolar trace
only at discrete points, and only within a limited range of times
T. This results in some loss of information. We will call this lost
information ‘sampling’ and ‘truncation’ noise, respectively.
There is also systematic ‘noise’ resulting from violations of
assumptions underlying eqn (1) due to limitations of the sample
or the spectrometer. Systematic noise will not be considered
here. Unfortunately, ‘noise’ is used to refer to errors and defects
in both the measured dipolar trace and in the distance distribu-
tion spectrum, which sometimes can be confusing.

In summary, PDS measurements do not yield V(T), but
V(T) + s(T). Only part of s(T) is reproducible noise that can be
measured independently and removed. So, instead of needing
to invert eqn (1) to obtain P(r), PDS is faced with inverting

V Tð Þ þ s Tð Þð Þ ¼
ð1
0

f ðrÞ
ð1
0

cos
gAgBm2�hT

r3
1� 3x2
� �� �

dxdr (2)

with the hope that the distance spectrum f (r) determined from
the experiment will closely approximate the actual distance
distribution function P(r) of the PCs in the sample.

Even when the magnitude of s(T) is small compared to V(T),
f (r) can be quite different from P(r). Frequently f (r) is not even
physically reasonable. Consequently, most approaches for
analyzing PDS data involve a step known as ‘regularization’
that encourages f (r) to have characteristics expected for P(r)
and to give a dipolar trace ‘consistent’ with the experimental
V (T) + s(T) data. Such strategy is very successful and widely used
for experimental PDS data analysis. When successful, regularization
results in a distance distribution consistent with some set of a priori
expectations about P(r) while partially rejecting noise.

But the regularization is almost always based on f (r), which
means the errors, i.e., noise, that propagate into the resulting
distance spectrum depends on P(r).17 The noise and the distance
distribution function become quite entangled. This regularization
approach makes it difficult to understand how random noise
affects experimental results because identical noise in the dipolar
trace affects the distance spectrum differently for every different
P(r). In effect, every sample becomes a special case that should be
considered individually, making it difficult to make a general-
ization about the propagation of random noise into the distance
spectrum without extensive arrays of simulations.

However, there is a Mellin Transform-based approach11 to
PDS data analysis that implements the regularization some-
what differently. It tries to make the experimental dipolar trace
‘reasonable’ according to eqn (1) in a way that affects only the
noise s(r), independent of P(r) of V(T). This uncouples the noise
and the distance distribution function in data analysis, making it
much easier to study the propagation of noise. Each individual
realization of noise in the experimental dipolar trace propagates

into its own individual set of noise in the distance distribution for
all P(r) or V(T), requiring only a single calculation to show how
that set of noise propagates into every P(r).

There are at least two important reasons for understanding
how the different types of noise in experimental PDS data
propagate into the distance spectrum. (1) It becomes possible
to recognize and exclude the noise from further analysis and
interpretation once it is understood where and how the noise
appears in the distance spectrum. (2) Data collection protocols
can be optimized to reduce or redistribute noise in the distance
spectrum to improve the accuracy, reliability, and throughput
of measurements.

Here we examine in silico the propagation of random, truncation
and sampling noise into the distance spectrum and compare data
acquisition protocols for reducing the impact of random noise. We
find that in the conventional data acquisition approach, random
measurement noise has its greatest impact on f (r) at shorter
distances. But other sampling schemes will reduce that impact,
giving improved accuracy and/or more rapid measurements.

We start with a brief description of the Mellin Transform
analysis and the properties that are important in this examination
of noise propagation. The Mellin Transform is benchmarked
against the familiar Tikhonov regularization to provide a point
of reference, revealing that random noise causes larger errors in
the distance spectrum at shorter distances. The propagation of
truncation and sampling noise is considered so that those types
of noise can be kept insignificant. Finally, the optimization of
measurements with respect to random noise is considered.

Methods
Calculation of f (r)

An analytical inverse solution of eqn (1) and (2) has been found
that uses the Mellin Transform.11,18,19 Using this solution, f (r)
is calculated from the experimentally measured dipolar trace.
For convenience, we will refer to this Mellin Transform analysis
as MeTA. Most regularization methods used for PDS analysis
seem to lack the property of linearity. But MeTA, like the
ubiquitous Fourier Transform, has this very useful property;
meaning that the noise s(T) after transformation is the same
regardless of the P(r) or V(T):

f rð Þ ¼ MeTA V Tð Þ þ s Tð Þð Þ

¼ MeTA V Tð Þð Þ þMeTA s Tð Þð Þ

¼ P rð Þ þMeTA s Tð Þð Þ

(3)

where MeTAðÞ denotes the operator performing the MeTA.
Thus, the error caused by any noise is simply MeTAðsðTÞÞ.

The linearity property makes it simple to study how
measurement noise s(T) propagates into f (r). The noise in the
distance distribution is simplyMeTAðsðTÞÞ and is unaffected by
either P(r) or V(T). Although noise propagates into the distance
spectrum independent of the P(r) or V(T), the noise itself
sometimes depends on P(r) or V(T). For instance, truncation
noise and sampling noise depend on P(r) or V(T) and must be
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considered in the context of a particular P(r) or V(T). It is often
useful to view them as distorting P(r), while random noise is an
independent contribution to the f (r).

Mellin Transform methods are quite new in PDS and in
magnetic resonance, so the MeTA approach as implemented11 is
benchmarked against the widely used Tikhonov regularization,
as implemented in DeerAnalysis.5 The Mellin Transform can be
written in terms of the Fourier Transform and shares several
properties18,19 that make the Fourier Transform so useful in
magnetic resonance spectroscopy. MeTA11 uses the fact that the
Mellin Transform is loss-less and has an inverse. No information is
lost when the Mellin Transform converts the time-domain dipolar
trace into a distance-domain spectrum of separations within pairs
of PCs. Just as the Fourier Transform loses no information in
converting an FID into a frequency-domain NMR spectrum. The
Mellin Transformation and MeTA simply present all the informa-
tion in the dipolar trace in a form that is easier for us to perceive.

The linearity property means that to see how noise s(T)
in the dipolar trace propagates into noise in the distance
spectrum, only the single calculation ofMeTAðsðTÞÞ is needed.
On the other hand, with regularization methods lacking linearity,
the noise in the distance spectrum depends not only on s(T),
but also on P(r).17 The linearity of MeTA provides a simple,
convenient tool to study how random noise propagates into
the distance spectrum regardless of the distance distribution
function. Without that linearity, every P(r) can be a special case,
requiring its own individual set of calculations.

For the benchmarking and the initial study of random noise
propagation, the trimodal P(r), Table 1, was used with eqn (1) to
calculate V(T) for a sampling step dT = 64 ns and Tmax = 6.64 ms.
This time window provides at least two cycles of the dipolar
frequency at the peak of each of the three modes, which is
regarded as adequate recovery an accurate f (r).2,21 As seen
later, truncation and sampling noise are negligible for these
parameters. This distribution has three peaks with different
intensities but similar widths, providing a reasonable, but not
problematic, model of PELDOR/DEER data.

Gaussian random noise with s = 0.017 and a mean of zero
was added to V(T). Nine datasets were created with the same
P(r) but different realizations of the noise. The f (r) was calculated
from each dataset by MeTA and by the Tikhonov regularization in
DeerAnalysis2013 with the regularization parameter chosen by
DeerAnalysis. The families of fi(r) obtained by the two analysis
methods were compared with each other and to the known P(r). In
later studies of non-uniform sampling, a more challenging bimo-
dal P(r) was used with two components having slight overlap and
different widths.

The freely available version of MeTA was used for all MeTA
calculations. It was created by NI LabView2016 and is shared
at https://sites.google.com/view/anna-matveeva/ as a simple
exe-file with short instructions for users. One internal para-
meter of MeTA can be optimized for each f (r). For the trimodal
distribution from Table 1 (Fig. 1 and Fig. 1S, ESI†), the para-
meter Nt = 1500 was used. All other calculations use Nt = 1250;
because it was optimal for the bimodal distribution in Table 1.

Error propagation function g(r)

To make it easier to follow the distribution of noise in the distance
spectrum, an error propagation function was calculated as

g rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

� �XN
i

ðPðrÞ � fiðrÞÞ2

vuut
¼ PðrÞ � fiðrÞk k:

(4)

This g(r) reveals how the errors in f (r) are distributed as a
function of distance.

Table 1 Parameters of the model P(r), dr is the standard deviation with the
shape of each mode defined as in eqn (5)

Mean Distance %r, nm
oD at %r,
MHz

Width
dr, nm

Relative
width, dr/%r

Normalized
Weight

Trimodal P(r)a

3.2 1.592 0.3 0.094 0.323
4 0.815 0.2 0.050 0.071
5 0.417 0.4 0.080 0.606
Bimodal P(r) for testing non-uniform acquisition schemes.
3.0 1.932 0.3 0.1 0.5
5.0 0.417 0.75 0.15 0.5

a This distribution was used by Kuznetsova et al.20

Fig. 1 (A) Dipolar traces for the model distance distribution function in Table 1, Black: with no noise, Grey: with nine realizations of random noise with s =
0.017, successive traces are shifted upward for clarity; (B and C) Black: distance distribution, the color bars are discussed in relation to truncation noise,
Grey: distance spectra for each trace, Red: the error propagation function g(r); (B) processed by DeerAnalysis, (C) processed by MeTA. With the default
parameters, DeerAnalysis gave no result for r o 2.5 nm. The MeTA calculations are plotted to r = 2.0 nm to show that the trends persist beyond the ‘open
window’.
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The ‘open window’

Comparisons of different sampling schemes are made with
respect to what we refer to as the ‘open window’ in the distance
spectrum. If the P(r) lies within the ‘open window’, there is no
truncation or sampling noise and we only need to consider
random noise and P(r) in the distance spectrum. Any component
of P(r) lying outside that ‘open window’ will produce truncation
and sampling noise that overlaps P(r) in the distance spectrum
and generally extends to shorter distances.

The edges of this ‘open window’ are set operationally with very
conservative limits to simplify study of random noise propagation.
Improvements in random noise in this ‘open window’ translate
directly to improvements in f (r) because truncation and sampling
noise are insignificant for this ‘open window’. However, valid
useful information about P(r) can be obtained outside the window.

Results and discussion
MeTA benchmark

Both analysis methods – MeTA and DeerAnalysis – gave similar,
but not identical, results when applied to the same datasets. The
families of distance spectra produced by DeerAnalysis, Fig. 1B,
and MeTA, Fig. 1C, are consistent with each other and with the
original P(r). The curves produced by each method from the
datasets with nine realizations of random noise encompass the
original P(r). The two components with large weights, Table 1,
are readily apparent, while the weakest component is lost in the
noise. As r increases, the error propagation function g(r), as well
as the scatter of the underlying fi(r) decreases. Significantly, the
g(r) from DeerAnalysis and MeTA overlap each other, Fig. S1
(ESI†), showing that the random noise in the dipolar traces
propagates in similar fashion into the distance spectrum.

DeerAnalysis provides a color-coded indication of the reliability
of the distance spectrum, which are replicated at the bottom of the
plots, Fig. 1B and C. The colors are anticorrelated with the errors
from random noise random noise, being green where the errors
from random noise are greatest. They do correlate well with
truncation noise and will be discussed later in that context.

These two analysis methods produce comparable distributions
of noise on datasets with distances and distributions that are not
atypical of many experimental studies. One important difference is
that the error propagation function from MeTA would be obtained
for this noise with every P(r), while the one from DeerAnalysis
would change if this noise was present with any other P(r). The
general agreement between the error propagation functions sug-
gests that whatever is learned from MeTA about noise propagation
does have relevance to the analysis of PDS data by Tikhonov and
other regularization methods. A detailed comparison of all known
methods for PDS analysis is beyond the scope of this work but is
being attempted by others.10,14,22–28

Propagation of random noise

The benchmark calculations show how random noise propagates
into the f (r) and g(r). The errors in the distance spectrum caused by
random noise diminish as the distance increases. Random noise

has its greatest impact at short distances, so that the distance
spectrum is more accurate for PC pairs with larger separations.
This puzzling trend does have a simple explanation. The dipolar
trace from pairs at long distances is represented by more
datapoints before it decays to zero and therefore is known more
accurately relative to the random noise. Consequently, the
signal to noise ratio and g(r) are better for pairs with longer
distances than ones with shorter distances, Fig. 1.

Decreasing the sampling step dT and the length of the
measured dipolar trace (Ttrace) would provide more samples
of the dipolar trace at the short times that are most important for
short distances. This tactic could be expected to increase the
signal to noise ratio and hence the accuracy of f (r) at small r.
Unfortunately, it would also severely truncate the dipolar trace at
the long times needed for longer distances with their small oD.

The competing demands made by pairs with short versus
long distances provided the impetus to explore non-uniform
data schemes in which the signal is measured more at short
times than at long times in order to improve the accuracy of the
distance spectrum at smaller values of r with minimal penalties
at large r. However, before exploring such schemes, the response
the distance distribution to truncation noise and sampling noise
must be understood. It would be counterproductive if those types
of noise simply replaced random errors as sampling schemes
were altered.

Propagation of truncation noise

The length Ttrace of the dipolar trace needed to recover a
reasonably accurate f (r) has been estimated to be two periods
of the dipolar frequency oD at the mean spin–spin distance %r,
i.e., Ttrace = 4p/oD, and this value should be increased for a
narrow distance distribution function.2,29 However, many pub-
lished PDS studies successfully use much longer or shorter values
of Ttrace. The linearity property of MeTA makes it easy to study
how truncation noise from a component or mode propagates into
f (r) independent of truncation noise from all other modes and
independent of other types of noise. This allows us to consider a
simple monomodal Gaussian distribution with mean distance %r
and width (standard deviation) dr

PðrÞ ¼ 1

dr
ffiffiffi
2
p

p
exp � r� �rð Þ2

2dr2

 !
; (5)

yet generalize to more complex distributions.
In the limiting case of a delta-function dr = 0, the long-time

asymptotic behavior of the dipolar trace is given by the inner
integral in eqn (1):16

V T ; rð Þ ¼
ð1
0

cos oDT 1� 3x2
� �� �

dx

lim
oDT�1

V T ; rð Þ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
12oDT

r
cos oDT �

p
4

� � (6)

which oscillates around zero at the dipolar frequency and
gradually decays as 1/T1/2. For a distribution of distances, V(T)
is obtained after additional integration over r. The contributions

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
A

pr
il 

20
21

. D
ow

nl
oa

de
d 

on
 8

/3
/2

02
5 

9:
57

:0
5 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D1CP00705J


This journal is © the Owner Societies 2021 Phys. Chem. Chem. Phys., 2021, 23, 10335–10346 |  10339

from PC pairs with different r interfere and accelerate the decay
of the dipolar trace.2,21

The shapes. The impact of dr on P(r) and the dipolar trace is
shown in Fig. 2A and B. As expected, increasing the width of
P(r) accelerates the decay of the dipolar trace: at dr/%r o 0.025
more than four modulation periods are distinguishable, while
at dr/%r 4 0.1 the oscillations have almost vanished, which
should decrease the required Ttrace. However, for very broad
P(r) with dr/%r 4 0.1, the dipolar trace lasts even longer because
the first minimum for some pairs shifts to longer times.

Let us examine the time Tmax at which the dipolar trace
decays to an arbitrary 1% of its initial value, i.e., V(T 4 Tmax) o
0.01, and the time Tmin of its first minimum. The Tmin increases
slowly with dr/%r, Fig. 2C, but Tmax initially decreases rapidly as
the oscillations in the dipolar trace are increasingly damped,
and then increases slowly, in parallel with Tmin, at large dr/%r.
Thus, Ttrace should depend on the shape of P(r), but Ttrace = 2TD

seems reasonable for dr/%r between 0.05 and 0.3.
In a multimodal distribution, each component has its own

Tmax. The kernel in eqn (1) scales with r�3, so that increasing

r - nr but keeping dr/%r constant would increase Tmax by a factor
of n3. Thus, for a multimodal distribution whose components
have similar dr/%r, the mode with the largest %r determines Tmax.

Effect of truncation. Let us examine in detail how truncation
of the dipolar trace, Fig. 3A, affects f (r) for a ‘‘narrow’’ (dr/%r =
0.05) and a ‘‘broad’’ (dr/%r = 0.1) distribution with the same mean
%r = 3 nm, Fig. 3B and C. Truncation is easier to understand in
terms of a distortion of the distance spectrum, so we look at f (r)
rather than the transformed noiseMeTAðsðTÞÞ. As Tmax decreases
and the dipolar trace is increasingly truncated, the position of the
maximum rmax shifts to shorter distances, Fig. 3D; the peak
amplitude changes, Fig. 3E; the peak width increases; and the
peak shape becomes asymmetric, Fig. 3F. The shift of rmax is
minimal when truncation occurs beyond 2TD and does not
depend strongly on dr/%r. But, the errors in the peak width do
depend on dr/%r: the ‘‘narrow’’ peak broadens if the dipolar trace
is truncated before its 2TD, whereas the ‘‘broad’’ peak narrows.
The narrow peak is distorted and asymmetric if it is measured
well beyond 2TD, but the broad peak still retains its overall shape
even when truncated at TD, Fig. 3C. For both distributions,

Fig. 2 (A) The Gaussian distance distribution function for %r = 3 nm at various widths dr noted on the right-hand side. (B) The corresponding dipolar traces
without random noise and with the same color code. (C) The Tmax/TD and Tmin/TD at different dr/%r values.

Fig. 3 Truncation effects for distance distributions with %r = 3 nm and dr/%r = 0.05 (‘‘narrow’’) and dr/%r = 0.1 (‘‘broad’’). (A) The dipolar traces without
random noise and with arrows below indicating the times when the trace was truncated in units of TD. (B and C) The f (r) recovered from the narrow and
broad distributions at the indicated truncation points. (D) Position of the f (r)max maximum rmax, (E) Normalized maxima of the f (r), (F) Asymmetry of the
f (r) peak, calculated as the ratio of the half-widths at half-height.
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it appears safe to truncate the data after the dipolar oscillation
decays to B10% of the initial value.

For a multimodal distribution, the distortions in f (r) occur
independently for each component, so that components with
shorter distances and shorter TD can usually be expected to
have more accurate f (r) than components at larger distances.
Unfortunately, truncation errors from each component extend
out to shorter distances, so that a peak at a short distance can be
overlapped by truncation noise from more distant components.
However, truncation noise can be kept minimal in the distance
spectrum by using an acquisition window with Ttrace Z 2TD for
the most distant component. We take this simple relationship
as a very conservative limit for a distance spectrum free of
truncation noise for our study of random noise and sampling
schemes. This limit can certainly be relaxed when greater levels
of noise can be tolerated or when truncation noise is specifically
included in the interpreting the distance spectrum.

DeerAnalysis provides colored bars as an indication of the
reliability of f (r), Fig. 1B and C. Those bars mirror the trends in
the propagation of truncation noise seen in Fig. 3. Within an
acquisition window, a component with small r is least distorted by
truncation noise in the distance spectrum, although it is subject to
truncation noise from components at larger distances, Fig. 3.

Propagation of sampling rate noise

The rate at which the dipolar signal is sampled can introduce
errors into f (r). The higher frequency components in the dipolar
trace might not be sampled often enough to uniquely determine
their frequency. This resembles the violation of the Nyquist limit
in the discrete Fourier Transform: sampling with too large a step
causes fold-over, wrap-around, or aliasing of high frequencies in
the spectrum. The highest frequency for a delta-function distance
distribution is 2oD at the furthest edge of the dipolar Pake pattern.
However, for distributions like those in Fig. 2A, the shortest
distance and the largest oD are not clearly defined because the
distribution asymptotically approaches zero. For non-uniform
sampling where the step size changes between samples, it is not
clear a priori how the sampling noise might behave.

It is convenient to consider sampling noise in terms of a
distortion of P(r), as done with truncation noise. The conventional
scheme of uniform sampling US uses a constant step size. Dipolar
traces without random noise were calculated for a monomodal
Gaussian P(r), eqn (5), with %r = 3 nm and dr = 0.1 nm with the same

Ttrace but different step sizes, Fig. 4A. Their f (r) were calculated by
MeTA, Fig. 4B. There was always some noise at very short
distances, even when the position shape and intensity of P(r) were
completely reproduced. How closely f (r) reproduces the P(r) peak
depends on the sampling rate: N B 11 points per period TD of the
dipolar frequency are sufficient for accurate recovery of f (r); at 6
points per period, f (r) has slight distortions in width and symme-
try; and by 3.5 points per period, f (r) has major distortions. In
Fig. 4C, the mean square deviation between f (r) and P(r) integrated
for r 4 2.7 nm shows that the minimum number of points for a
nearly unperturbed f (r) peak is about 8. Based on the scaling
properties of the dipolar trace, we set the maximum US step for a
distance %r very conservatively at

dT r p%r3ns/nm3 (7)

to exclude sampling noise from our examination of random
error. The sampling noise in f (r) is always present at short r and
eventually extends to larger distances as N decreases. The
magnitude of the noise near %r increases rapidly for N o 6
and the peak in the distance spectrum becomes increasingly
distorted.

Because of the linearity property of MeTA, the shortest %r, in a
multimodal P(r) sets the sampling rate needed with US for
accurate recovery of the full multimodal distance distribution.
The sampling noise is confined to shorter distances, so that
components of f (r) at large distances can be measured without
sampling noise even if other components are undersampled
and seriously distorted by sampling noise. The amplitude of the
sampling noise in the distance spectrum does not increase at
short distances as it does for random noise.

Non-uniform sampling

The three types of noise considered here have somewhat
different properties. Random noise makes a disproportionate
contribution to errors in f (r) at short r but can be reduced by
increasing the quality, i.e., signal to noise ratio, of the data.
Truncation noise is basically determined by the P(r) component
with the longest distance and can be kept minimal by using a
large Tmax. Sampling noise is largely determined by the P(r)
component with the shortest distance but can be kept minimal
by using a small dT.

The different characteristics of these types of noise leave
little scope for optimization of PELDOR/DEER measurements

Fig. 4 (A) Simulated dipolar traces for different sampling rates for a Gaussian distance distribution function P(r) with %r = 3 nm and dr = 0.1 nm. The
number of points N sampled in each modulation period is shown in the legend. (B) The recovered f (r) with the same color code and the true P(r) function
(grey curves). (C) The mean square error mse between P(r) and f (r) for r 4 2.7 nm for different N.
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using US without increasing the experimental measurement
time. However, non-uniform measurement might significantly
reduce noise in f (r) by making fewer measurements at long
times but more at short times if sampling and truncation noise
does not significantly increase.

Random noise can be reduced in principle by sampling each
point more times; by sampling more points, but the same number
of times; or by a combination of these two. We consider two
approaches: non-uniform sampling (NUS) where some regions
of the dipolar trace are sampled more densely in time and non-
uniform data accumulation (NUA) where some points in the
dipolar trace are signal averaged more thoroughly than others.

NUS is actively used in NMR with several reviews,17,30–34 and
NUA has been tried.35,36 Compressed sensing can be considered a
form of NUS,37,38 and is used in many forms of spectroscopy and
imaging, including NMR, but uses a rather different approach to
convert raw data into a spectrum than we are considering here.
NUS was demonstrated in EPR pulse hyperfine spectroscopy and
relaxation measurements.39–42 NUS generally keeps the number
of samples per point constant, focusing more on enhancing
resolution while measuring fewer points than on increasing the
signal to noise ratio of each point.

Two variations of PELDOR/DEER depart from a strictly US
scheme. One is GloPel (Global analysis of PELDOR data)43

which simultaneously analyzes a short dipolar trace with a
high sampling rate and a long trace with a low sampling rate.
GloPel can be regarded as a segmented NUS scheme. The
second method is RELOAD (Relaxation-Optimized Acquisition
Length Distribution), where the dipolar trace is measured
segmentally, and the segments are stitched into a full trace.44

RELOAD can be implemented as a NUA scheme. Both schemes
gave enhanced accuracy and reduced measuring time for a
complicated P(r). But the propagation of random noise into f (r)
was not characterized for either scheme, so there is little basis
for optimizing these schemes.

Sampling schemes

MeTA readily accommodates NUA or NUS schemes, providing a
simple approach to examine noise propagation and optimization
of those schemes. We consider two non-uniform measurement
schemes. But while trying to reduce random noise in the f (r), it is
important not to introduce sampling and truncation noise into
what we call the ‘open window’ in the distance spectrum that is
free of truncation and sampling noise. We try not to significantly
narrow or even close the ‘open window’. For this phase of in silico
experiments, we use a window suited to the bimodal P(r), Table 1,
with resolved peaks at 3.0 and 5.0 nm; but the results are easily
applied to other P(r).

US. For US, we saw that to eliminate most of the sampling
noise caused by the mode at r1 = 3.0 nm required dT1 r 84 ns,
eqn (7). This dT1 is more than sufficient to eliminate the sampling
noise from the second component at 5.0 nm (dT2 r 392 ns). These
step sizes scale as the cube of the ratio of distances, i.e., (5.0/3.0)3.
Similarly, the Ttrace based on the longer distance, Tmax2 = 5.04 ms Z
2TD, would recover both peaks without much truncation noise,
Table 1 and Fig. 3D–F. A US measurement with dT1 and Tmax2

would produce a dipolar trace for this distribution with the
number of points NPTUS = 60 and negligible sampling and
truncation noise.

eNUS. A segmental NUS scheme could start with dT1 steps
until Tmax1 and then continue with dT2 steps until Tmax2,
reminiscent of RELOAD. But such a scheme requires prior
knowledge of P(r) to set up the measurement. Therefore, we
consider a more general scheme requiring less prior knowledge,
denoted here as eNUS, i.e., exponential NUS, in which samples
are taken with exponentially increasing delays: Ti = a(eib� 1), with
T0 = 0 through TNPT�1 = Ttrace. The parameter b controls how
sampling is biased toward short delays. The eNUS converges
smoothly to US as b approaches 0. Here we arbitrarily set
b = 0.2, which performs well but might benefit from further
optimization. When Ttrace, b, and the number of experimental
points, NPTeNUS, are selected, the times Ti for measurement are
known, because

a ¼ Ttracee
NPTeNUS�1ð Þb: (8)

NUA. We also consider an NUA scheme, in which the dipolar
trace is measured at the same uniformly spaced delays as for
US, but the number of measurements (or shots per point SPP)
decreases exponentially: SPPNUA,i = qi (see Section S.6, ESI†).

Truncation noise in eNUS and NUA

Truncation noise, as defined earlier, is simply the signal
V(T 4 Ttrace) at times beyond the (time) measurement window.
It does not depend on how the signal is measured within the
window; only on what lies outside the window. As a result, the
truncation noise for 4-pulse PELDOR/DEER, RIDME or DQC is
determined by Ttrace and propagates identically into the distance
spectrum for identical Ttrace. Consequently, we use the same
Ttrace = 5.04 ms to compare the performance of the different
sampling schemes.

Sampling noise in eNUS and NUA

Sampling noise is the result of knowing the signal only at
certain discrete delays within the measurement window. Any
errors in the measurements at those points are considered here
as random noise. US and NUA schemes have identical sampling
noise because the signal is sampled at identical delays and have
identical values after normalization. However, eNUS measure-
ments are made with a different set of delays which results in
different sampling noise that we have not yet examined.

The initial part of the dipolar trace can be sampled more
densely with eNUS. This should produce less sampling noise at
the short distances than US and NUA for the same NPT because
the initial values of dTeNUS are much smaller than dTUS. This
expectation is easily verified with MeTA. The V(T) for the
bimodal distribution, Table 1, with no random noise, was
sampled at 12, 16 and 32 points according to the US and eNUS
schemes in Table 2.

The V(T) and the points at which it was sampled are shown
in Fig. 5, together with the P(r) and f (r) in the insets. At the
same NPT, eNUS has much less sampling noise, Fig. 5A–C, than
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does US, Fig. 5D–F. The eNUS with 12 sampled points, Fig. 5A,
performs about as well as US with 32, Fig. 5F, giving a similar f (r).
It is noteworthy that the first three or four samples in Fig. 5A and
F have very similar delays and deliver similar rmin. With eNUS, the
component at 3.0 nm is reproduced well with NPT Z 15. For the
5.0 nm component even NPT = 12 is adequate, Fig. 5A.

In contrast, US accurately recovers only the 5.0 nm component
with NPT = 16, Fig. 5E, while the peak at 3.0 nm is distorted and
major errors appear at smaller distances. The relative amounts
of short- and long-distance components are distorted by
US for NPT r 32, Fig. 5D–F. That was expected because the
points per dipolar cycle ranges between 1.2–3.3 for the 3 nm
peak. Eqn (7) predicts distortions from sampling noise until
NPT Z 60.

These results are supported by experiments with a monomodal
distance distribution where NPT was systematically varied, see
section S.5. The mse between P(r) and f (r), Fig. S7 (ESI†), drops

rapidly as NPT increases reaching zero roughly when the first
eNUS step is

dT1 = T1 � T0 = a � (eb � 1) r p%r3ns/nm3. (9)

This is the same criterion (at least with b = 0.2) as for US. But
with eNUS, the steps proceed to grow so that many fewer delays
need to be measured before reaching Ttrace. It is important to
note that mse does go to zero, confirming negligible truncation
noise with eNUS when Ttrace Z 2TD.

It is now possible to select and manipulate the ‘open
window’ for US, eNUS, and NUA sampling schemes. Any reason-
able distance distribution P(r) whose %r lie within that window
will produce distance spectra substantially free of truncation
and sampling noise.

Random noise in eNUS and NUA

We are now able to compare the random noise performance of
different sampling schemes on a consistent basis. MeTA allows
us to take random noise and convert it into the random noise
component of f (r) and g(r) in the whole distance spectrum. If the
P(r) lies within the ‘open window’, only random noise and P(r)
appear in the distance spectrum. Changes in random noise in
this ‘open window’ translates directly to changes in the quality
of f (r) because truncation and sampling noise are insignificant.

Accuracy. How does random noise propagate into f (r) and
g(r) with eNUS or NUA? A smaller NPT is required to recover the
distance distribution with minimal sampling and truncation
noise using eNUS (NPTeNUS Z 15) than with US or NUA
(NPTUS/NUA Z 60). At first, we will keep the total time of the
experiment constant at Tall and change the signal averaging to
compensate for the change in NPT. Thus, the total random noise

Table 2 The US/NUA and eNUS schemes at different NPT. Ttrace = 5.04 ms
and b = 02

NPT

US/NUA eNUS

dTUS nsa rmin nm a, ns dT1, nsb rmin nmc

32 162 3.67 10.249 2 o1.5d

30 174 3.76 15.305 3 o1.5d

24 220 4.06 51.176 11 1.51
20 264 4.32 115.327 25 1.98
16 336 4.67 264.074 58 2.62
12 458 5.26 628.036 139 3.49

a Time step dTUS rounded to an even number of ns. b Initial time step
dT1 for eNUS rounded to a whole number of ns. c rmin for eNUS with
b = 0.2 based on eqn (7) and (9). d PELDOR/DEER is typically not
applicable at distances less than 1.5 nm.

Fig. 5 Effect of sampling noise for the eNUS (A–C) and US (D–F) schemes with the same number of experimental points NPT per trace. The dipolar trace
is shown by the black curve, the experimentally sampled points are shown by red circles. (A and D) NPT = 12; (B and E) NPT = 16; (C and F) NPT = 32.
Insets show the recovered (red line) and native (black line) distance distribution functions.
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power in the measurement is constant, but its distribution
within the dipolar trace and the distance spectrum can change.
The g(r) from random noise in the three sampling schemes are
compared in Fig. 6. The noise level for US with NPT = 60 is

s0 = 0.017 (details are in S.7) and is scaled as s ¼ s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPT=60

p
to

reflect the signal averaging changes. For NUA, the noise at each
point i is given by eqn (S1) (ESI†).

Fig. 6A shows how random noise propagates in US as NPT
changes. A PDS measurement delivers a horizontal slice (at
some value of NPT from this plot). Decreasing NPT increases dT to
keep Ttrace constant. Consequently, rmin (black curve) increases,
narrowing the ‘open window’ between rmin and 5.0 nm. The two-
dimensional plot of Fig. 6A shows that in the ‘open window’, NPT
has little effect on the random noise at a given distance, but
virtually closes the ‘open window’ as NPT gets small. Thus, there is
no room to optimize the US measurement if Tall is fixed. To the left
of the ‘open window’, the noise does change, but sampling noise
becomes significant for any portion of P(r) lying in that region.

Random noise produces the largest errors in the ‘open
window’ at small r. Decreasing NPT does not alter that, it
simply narrows the window and the short distances fall outside
the window, making their g(r) and f (r) less relevant. Vertical
slices in this plot show that for random noise, the error at a
fixed value of r is independent of NPT while r remains within
the ‘open window’ defined by the black and white lines.

In short, noise and sensitivity with US depends only on Tall

and the total number of shots while NPT only controls rmin. This
behavior is expected because the dipolar trace changes slowly and
smoothly for distances within the window, so that it does not
matter if the signal is measured a few times at many different
delays or many times at a few delays. There are large blue areas,
nearly free of random noise, on the right and upper left portions of
Fig. 6A, and to some extent in the other subplots. Unfortunately,
they lie far outside the ‘open window’ and are useless; any portion
of P(r) in those areas would be overwhelmed by truncation and
sampling noise, respectively.

The eNUS scheme, Fig. 6B, has a more complex g(r) from the
random noise. Within the ‘open window’, g(r) is larger at shorter
distances, but it also grows as NPT increases, in contrast to US.
The ‘open window’ is much broader than with US at the same
NPT, because the initial dT are very much smaller with eNUS.

Inside the ‘open window’, the random noise contribution to g (r)
decreases as NPT decreases. Thus, using fewer points but
measuring each one more accurately decreases the impact of
random noise in the distance spectrum. Further improvement
may be possible by optimizing the value of b.

The ‘open window’ does not change for the NUA scheme,
Fig. 6C. The acquisition parameter q has some effect on g(r) from
random noise, but the improvements relative to US are modest.
There is a region of q from 0.93 to 0.96 where g(r) is flatter than
for US: smaller at short r, but greater at long r.

Comparisons of sampling schemes should be made for similar
‘open windows’, which is tricky with Fig. 6 because the ‘open
windows’ vary so much. Slices of g(r) for the three schemes are
compared, Fig. 7. For US and NUA (q = 0.93), NPT = 60 was used,
and for eNUS, 16. The ‘open windows’ are similar: 3.0–5.0 nm for US
and NUA, and 2.62–5.0 nm for eNUS. The g(r) for US falls steadily as
r increases in the window, consistent with Fig. 2 and Fig. S1 (ESI†).

With Tall constant, g(r) from random noise for eNUS (red
curve) is nearly two-fold lower near rmin than for US (black), but

Fig. 6 Comparison of error propagation functions g(r) for random noise in different sampling schemes. (A) US and (B) eNUS for different NPT stacked
vertically, and (C) NUA for different values of q with NPT = 60, NUA at q = 1.0 is the same as US. The color scheme for the magnitude of g(r)
has logarithmic scaling. The black dashed lines show rmin for each sampling scheme, so that f(r) to the right of that line is undistorted by sampling noise.
Ttrace = 5.04 ms, so truncation noise becomes significant for r 4 5.0 nm (indicated by the gray vertical line). Also see Fig. S8 (ESI†).

Fig. 7 The noise propagation function g(r) for different sampling
schemes. Random noise in the signal is the same, but the number of
shots averaged per point varies, measurement time Tall is the same except
for the magenta curve. Black: US with NPT = 60; Blue: NUA, NPT = 60,
q = 0.93; Red: eNUS, NPT = 16; Magenta: eNUS, NPT = 16, measurement
time 16/60 or 3.75-fold shorter than for the others. Distance windows:
3.0–5.0 nm for US and NUA, and 2.62–5.0 nm for eNUS.
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they are nearly the same at the end of the ‘open window’. This is
a redistribution (flattening) and net decrease of the errors from
random noise. For NUA (blue), g(r) starts lower but ends higher
compared to US, crossing near r = 4 nm. This is mostly a
redistribution of errors within the ‘open window’ without a net
decrease, giving a flatter error curve for random noise than for
either US or eNUS. However, eNUS consistently delivers the
lowest g(r) from random noise at any r within the ‘open window’.

Efficiency. An alternate way to evaluate the non-uniform
schemes is to consider the measurement time Tall needed to
reach the same g(r). A decrease in the Tall needed to achieve an
acceptable distance spectrum is an increase in the throughput
and productivity of the spectrometer. The total measurement
time can be decreased for eNUS by keeping the number of shots
constant at each delay. The 16 delays would be measured
3.75-fold faster than the 60 delays for US. Surprisingly, the
g(r) are similar for random noise at rmin for US and this
accelerated eNUS. The error from random noise still decreases
more slowly (flatter) but from a higher initial value at rmin.
In situations where errors from random noise are most critical
near rmin, this accelerated eNUS can significantly increase
spectrometer throughput and productivity.

Practical aspects of non-uniform schemes

The non-uniform schemes show potential for significantly
improving PDS methods, such as PELDOR/DEER and DQC, by
decreasing the impact of random noise on the distance spectra.
This would result in increased quality of the distance spectra
and/or increased throughput and efficiency. However, the in
silico experiments here use idealized signals and idealized
noise to examine how three different types of noise affect the
distance spectra and how changes in the sampling scheme can
improve the noise propagation function.

Real experimental data contain other noise that were not
considered but could be studied by analogous in silico experiments.
Experimental dipolar traces typically have a baseline offset, delay
time offsets, and decays of the signal and baseline. Such noise types
are shared with US schemes and several strategies for dealing with it
are in use and more are in development.27,45 Signal decay can cause
the magnitude of the random noise to change as the delay time
increases. This will affect the optimization of NUS and NUA
schemes, so that, e.g., different q may be needed for different signal
decays. But there appear to be no difficulties unique to non-uniform
schemes.

A second practical problem concerns the method for solving
the inverse problem. The prototypical Tikhonov-based approach,
like other time-domain approaches, assumes uniformly spaced
delay times. They require modifications to the algorithm to
accommodate NUS data. Fourier-based techniques (for example,
the Monte-Carlo approach)9,12 require either abandoning the
classic fast Fourier transform, or some interpolation of the
dipolar trace onto a uniform time grid. Some additional effort
will be needed to adapt the popular analytical approaches to
use non-uniformly sampled data, but the results here suggest
significant rewards. Although the different approaches used by
spectroscopists to regularize the inverse PDS problem do vary in

their characteristics and performance, we expect that they will
produce better distance spectra when given better dipolar trace
data based on the results obtained here.

The final concern is how to set up a measurement to use a
non-uniform scheme. To avoid truncation and sampling rate
noise, it is necessary to estimate the smallest and largest dis-
tances, rmin and rmax, between PC pairs in the sample, to set the
desired distance window. This can be based on knowledge or
expectations about the sample, or on preliminary measurements.
If P(r) has features outside the ‘open window’, those at shorter
distances can appear with sampling noise extending to short
distances, while those at larger distances can produce truncation
noise extending into the ‘open window’ set by the values chosen
for Ttrace E 2TD (from rmax) and dT = prmin

3 from eqn (7).
For NUA, Ttrace and dT dictate NPT = Ttrace/dT and only q remains

to be chosen. Some adjustment of parameters is usually necessary
to accommodate the spectrometer capabilities. It is almost never
possible for q to prescribe an integral number of shots for each
point in an NUA. Some rounding is required, but the actual number
of shots must be used to normalize the data at each point.

For eNUS, Ttrace is determined by the desired rmax. Then two
more values must be selected from among dT1 (subject to
eqn (9) and the desired rmin), NPT, a, and b. These parameters
are not entirely independent. Some adjustment is needed to
accommodate the spectrometer, particularly its resolution in
generating delays. The actual delays used in the measurement
must be used in the analysis to produce the distance spectrum.

Conclusions

This work has two important, immediate results. (1) The noise
propagation function g(r) reveals that random noise in the PDS
measurement propagates non-uniformly into errors in the
distance spectrum. (2) Changing the traditional US scheme to
a non-uniform scheme alters the distribution of random noise
in the distance spectrum and can even decrease the net amount.
Both results give a new impetus for exploring both the experi-
mental design and the solution of the inverse problem in PDS.

The paradigm of the noise propagation function g(r) enables
a more detailed and precise consideration of experimental
design and analysis in PDS. Together with the linearity property
of MeTA, it allows a detailed investigation of how, and where,
the different types of noise propagate into errors in the distance
spectrum. Its use here demonstrated that the errors from random
measurement noise can be redistributed and even decreased by
changing the experimental measurement protocol. Explicitly
considering g(r) may produce even better algorithms for solving
the inverse PDS problem to improve recovery of the distance
distribution.

This work demonstrates the validity and potential of non-
uniform data acquisition, but additional work is required to
understand the extent of the benefits and how robust the
approach can be made. But NUS should increase the quality
of experimental results from current spectrometers without
increasing measurement time. All properly designed US, NUA, or
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NUS schemes will all recover the exact P(r). They differ, though, in
how and where random noise appears in each distance spectrum.
This means that measurements can be designed to distribute the
random noise toward those parts of the distance spectrum where it
has the least impact on the desired regions of P(r).

Finally, we now see the way that truncation and sampling
noise propagate into the distance spectrum. This knowledge
impacts how PDS measurements should be set up. Truncation
noise should always be avoided when selecting Ttrace. The PC
pairs with the largest separation distance are the first to give
truncation noise which overlaps peaks from all other pairs.
Sampling noise appears first from pairs with shorter separation
distances, but their sampling noise overlaps only pairs with
even smaller separations. Consequently, some sampling noise
can be tolerated and will not interfere if the measurement is
only concerned with pairs having even larger separations.
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