Issue 8, 2021

Pentapeptide IKVAV-engineered hydrogels for neural stem cell attachment

Abstract

Spinal cord injury remains irreversible with current treatment paradigms, due to the inability to rebuild the regenerative environment for neurons after injury. Neural tissue engineering that encapsulates the neural stem/progenitor cells within an artificial scaffold provides a possibility to regenerate neurons for spinal cord injury repair. The attachment and survival of these neural cells usually require similar microenvironments to the extracellular matrix for support. Here, a three-dimensional pentapeptide IKVAV-functionalized poly(lactide ethylene oxide fumarate) (PLEOF) hydrogel is developed. In vitro tests demonstrate that the IKVAV-PLEOF hydrogels are biodegradable and hemo-biocompatible. This IKVAV-PLEOF hydrogel is shown to support neural stem cell attachment, growth, proliferation, and differentiation. Additionally, the neural stem cells could be readily formed as spheroids that subsequently encapsulated, attached, and proliferated within the three-dimensional hydrogel constructs. Additionally, an in vivo test confirms the biodegradability and biocompatibility of the IKVAV-PLEOF hydrogels revealing that the hydrogels biodegrade, new blood vessels form, and few inflammatory responses are observed after 4-week implantation. The neural stem cell spheroid-laden hydrogels may have further implications in spinal cord injury regenerative and brain repair in neural tissue engineering.

Graphical abstract: Pentapeptide IKVAV-engineered hydrogels for neural stem cell attachment

Supplementary files

Article information

Article type
Communication
Submitted
28 Aug 2020
Accepted
09 Jan 2021
First published
11 Jan 2021

Biomater. Sci., 2021,9, 2887-2892

Pentapeptide IKVAV-engineered hydrogels for neural stem cell attachment

Y. Yin, W. Wang, Q. Shao, B. Li, D. Yu, X. Zhou, J. Parajuli, H. Xu, T. Qiu, A. K. Yetisen and N. Jiang, Biomater. Sci., 2021, 9, 2887 DOI: 10.1039/D0BM01454K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements