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Azadeh Saberi,d Ali Zolfaghariane and Mahdi Bodaghi *a

Over the last decade, 3D bioprinting has received immense attention from research communities for

developing functional tissues. Thanks to the complexity of tissues, various bioprinting methods have been

exploited to figure out the challenges of tissue fabrication, in which hydrogels are widely adopted as a

bioink in cell printing technologies based on the extrusion principle. Thus far, there is a wealth of literature

proposing the crucial parameters of extrusion-based bioprinting of hydrogel biomaterials (e.g., hydrogel

properties, printing conditions, and tissue scaffold design) toward enhancing performance. Despite the

growing research in this field, numerous challenges that hinder advanced applications still exist. Herein,

the most recently reported hydrogel-based bioprinted scaffolds, i.e., skin, bone, cartilage, vascular, neural,

and muscular (including skeletal, cardiac, and smooth) scaffolds, are systematically discussed with an

emphasis on the advanced fabrication techniques from the tissue engineering perspective. The methods

covered include multiple-dispenser, coaxial, and hybrid 3D bioprinting. The present work is a unique

study to figure out the opportunities of the novel techniques to fabricate complicated constructs with

structural and functional heterogeneity. Finally, the principal challenges of current studies and a vision of

future research are presented.

Introduction

Tissue engineering (TE) is an interdisciplinary field that com-
prises applying principles of life sciences and materials engin-
eering to restore, maintain, and enhance tissue function.1,2 By
harvesting cells from a patient (or other resources) and
seeding onto or incorporating into a tissue scaffold, the cell-
scaffold construct tends to undergo maturation to being a
functional construct. It could be implanted into the patient to
help repair or heal the damaged tissues.3 The typical design of
tissue scaffolds as functional constructs depends on the
understanding of their composition and organization.
Accordingly, appropriate architectures and biomaterials/cells
to mimic the key properties of tissue should be carefully

selected.4 In this regard, a wide variety of cells, biomaterials,
growth factors, and other supporting components have been
investigated to create functional constructs.5–8 However,
scaffold-based strategies not only have often failed to imitate
complex structures of native tissues but also remained ineffec-
tive for placing multiple types of cells in desired positions.9

In recent years, three-dimensional (3D) bioprinting has
occupied a prominent place among all other methods for pro-
ducing tissue scaffolds to bridge the divergence between artifi-
cially engineered tissue constructs and native tissues.10–12 Due
to increasing interest, its global market, which was estimated
at nearly $ 487 million in 2014, is foreseen to reach $ 1.82
billion in 2022.13 Using 3D bioprinting techniques, bioinks
(mainly comprising biomaterials, living cells, and/or bioactive
molecules) are printed in a predesigned manner and incorpor-
ated with living cells as dynamic structures with functions
(e.g., growth and proliferation) within scaffolds to regenerate
target tissues.14–16 Besides, it is a rapid and inexpensive
method to generate geometrically well-defined scaffolds,17 and
offers precise control over the composition of cells and bioma-
terials, associated with spatial distribution, and architectural
accuracy.12,18 Moreover, its ability for precise placement of
high-density cells in the desired location and multiple types of
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cells in an orderly fashion mimics heterogeneous architectures
of native tissues. It also allows the formation of vascular struc-
tures capable of recapitulating the structural features of
human tissues.9

Current 3D bioprinting technologies for engineering func-
tional human tissues and organs that recapitulate their native
prototypes can be categorized based on four major governing
approaches: (1) droplet-based, (2) extrusion-based, and (3)
laser-induced forward transfer, and (4) stereolithography bio-
printing, and each of them can be more sub-categorized based
on the specific mechanisms with which materials and cells are
positioned.19–21 Among these, one of the most interesting
explored techniques is extrusion-based bioprinting (EBB),
which extrudes or dispenses continuous strands or fibers of
biomaterials to form 3D scaffold structures17,22 in a layer-by-
layer manner.23 It should be mentioned that although novel
bioprinting techniques are being developed (e.g., contactless24

and volumetric bioprinting25), EBB remains the most preva-
lently employed approach in research and commercial areas to
fabricate 3D cell-laden scaffolds due to its cost-effectiveness,
accessibility and capacity to replicate tissue complexity.20,21,26

The main advantages of EBB compared to other 3D printing
methods have been concluded as follows: (1) producing tissue
scaffolds using a wide variety of biomaterials and cell types,
even hydrogel polymers with suspended cells;27 (2) successful
layer-by-layer deposition of biomaterials with physiological cell
density in a designed way;28 (3) relatively less process-induced
cell damage compared to other techniques;22,29 and (4) great
potential for regulating and conducting stem cell growth and
differentiation for many applications.15 Despite some chal-
lenges such as limited strand resolution (typically greater than
100 µm),15 and restricted biomaterials choice,17 the stated
advantages associated with economical aspects and commer-
cial availability have made EBB the most popular technique
amongst tissue engineers and researchers.30

Although various polymeric biomaterials have been
employed as scaffold matrices, which had adequate qualities

to provide necessary support and properties required for
tissue growth, they had insufficient cell mimicking quality
and inadequate interaction with stromal cells, which are
essential in promoting tissue regeneration.31,32 An alternative
approach to overcome the restrictions of these polymeric
scaffolds was designing hydrogel-based bioprinted con-
structs.33 Hydrogels are well known as an appropriate environ-
ment for scaffold development because of their composition,
their structure is somewhat similar to the extracellular matrix
(ECM) of much human tissue and they are easily prepared
using relatively mild conditions and aqueous chemistries.
They have gained widespread popularity in recent years based
on their ability to maintain a distinct and porous 3D struc-
ture, to provide mechanical support for cells in engineered
tissues, to adapt to interchangeable sol–gel conditions, to
simulate the native extracellular matrix, to retain high water
content, and to achieve high cell seeding density and homo-
geneous cell distribution throughout the scaffold.34–36 Their
high water content provides a hydrated tissue-like environ-
ment which is appropriate for cell incorporation, and
enhances the cell viability in bioprinting in a hydrated and
mechanically stable 3D environment.37 These structural pro-
perties enable hydrogels to be utilized as tissue scaffolds in
the body by increasing the influx of cell metabolites and the
disposal of cell waste through their pores.38,39 A large and
growing body of the literature in recent years has investigated
hydrogels concerning their origin, and structural, chemical,
and biological characteristics.4,40–42 There are also systematic
discussions in terms of suitable hydrogel-forming polymers
for TE according to the origin and nature of the polymer,
hydrogel-forming mechanisms, crosslinking mechanisms,
modification approaches, their physical, chemical or biologi-
cal properties, their functionality and printability and their
mostly affected printing parameters.31,43,44

To answer the question as to what are the ideal properties
of an extrusion-based hydrogel bioprinted scaffolds, there is a
wealth of the literature concentrating on the crucial para-
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meters of EBB such as hydrogel parameters, printing con-
ditions, and tissue scaffold design.9,10,19,36,45–48 Also, some
researchers have extended the discussion by investigating the
optimized performance of bioprinting in native tissue develop-
ment based on the simultaneous regulation of the main practi-
cal parameters of EBB.37 However, reviews on the limitations
and potentials of tissue scaffolds in the EBB of polymeric
hydrogels have not been well-documented. In this review,
recently developed bioprinted scaffolds, i.e., skin, bone, carti-
lage, vascular, neural, and muscular (including skeletal,
cardiac, and smooth) scaffolds, are discussed with a focus on
novel approaches to building constructs (Fig. 1). Moreover,
this review will provide recommendations for future challenges
in 3D bioprinting and perspectives for advanced research on

this framework. This review is not meant to be exhaustive but
would offer the most prominent advances in their respective
fields, and those with the most promise for prospective
studies.

EBB strategies

In an EBB system, the positioning process allows the dispen-
sing head to deposit the bioink onto the printing stage
through three mechanisms: a pneumatic-, piston-, or screw-
based system.49 Since the manufacturing process strongly
affects the geometry of the scaffolds, there are numerous
reports on the practical parameters in detail.9,10,19,42,46,50 Here,
the focus is on the outcomes of various techniques on scaffold
construction based on the TE perspective and fabrication
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Fig. 1 Schematic illustration of the tissue engineering process using extrusion-based bioprinting.
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methodology. From the TE perspective, direct and indirect,
in situ and in vitro, and also scaffold-free versus scaffold-based
bioprinting methods are considered for tissue fabrication.
Besides, considering the limitations of conventional bioprint-
ing technology to fulfil all the conditions, advanced EBB fabri-
cation methods have been developed, which could be generally
classified into multiple-dispenser, coaxial, and hybrid
bioprinting.17

One of the most prevalent methods for micro-extrusion of
multiple materials is the application of multiple nozzles
enabling simultaneous deposition of various bioinks with
minimum cross-contamination.21,51 To be more specific, fabri-
cation of practical constructs utilizing a multi-dispenser system
provides the capability of simultaneous deposition of multiple
biomaterials and cells in a uniformly blended form with
minimum cross-contamination, which is promising for fabricat-
ing hydrogel-based composite scaffolds (e.g., combination of
hydrogels with synthetic polymers or sacrificial materials).52

However, the complexity and high cost of assembling the
required robotic system hinder the broad application of this
method. Thus, advanced fabrication techniques are necessary
to generate complex constructs with controlled architectures
and adequate mechanical properties.53 Employing coaxial bio-
printing (a configuration featuring two or more capillary

nozzles connected in a coaxial fashion) would result in a more
complex structure that would benefit TE applications such as
vascularization.54 The core/shell geometry appears promising
in creating vascular networks due to its specific characteristics:
(1) capacity of fabricating hierarchical, multi-layer tissue con-
structs with desirable biological and mechanical properties
using multi-material and cellular constructs, (2) increasing cell
viability during cultivation, and (3) tuning the biophysical and
biological properties of the vessel construct.55,56

One of the freshest trends in regenerative medicine is the
improvement of 3D-printing hydrogel scaffolds with bio-
mimetic structures. However, it has been almost difficult to
achieve extremely biomimetic hydrogel constructs with proper
mechanical properties resembling the natural tissue.57,58

Therefore, hybrid bioprinting techniques have been intro-
duced to fabricate more complex constructs, e.g., a combi-
nation of a UV-light beam with EBB and integration of a multi-
dispenser system with coaxial configurations or electro-
spinning technology.

Despite providing a controllable geometric configuration
(macro-architecture), pore size, shape, interconnection, and
spatial distribution (micro-architecture), 3D printing systems
fail to create surface nanotopographies, which are beneficial in
enhancing the performance of 3D printed constructs.59,60 On
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the other hand, for the electrospun nanofiber scaffolds,
although the porosity is high, even up to 90%, the pore size is
too small for cells to migrate and infiltrate. Besides, electro-
spun fibers typically form 2D membranes with low thicknesses
rather than bulk 3D scaffolds, and fibrous scaffolds usually
have poor mechanical properties due to their high surface-
area-to-volume ratios and porosity.61–63 To overcome these
issues, and also to mimic the ECM, the EBB technique has
been consolidated with electrospinning to develop scaffolds
possessing advantages of different kinds of materials only in
one construction.64–67 In other words, combining 3D printing
and electrospinning can make their particular advantages
complementary and improve the capability of developing func-
tional biomimetic scaffolds.68–70

Furthermore, the emerging microfluidic organ-on-a-chip
platform with widespread applications has opened up a new
window to create more complex constructs.71 The combi-
nation of bioprinting with organ-on-a-chip technology
enables direct cell printing and/or patterning in microfluidic
devices, and production of the biomimetic heterogeneous
microenvironment, and complex 3D microstructures.72,73 It
also enables the production of complex and biomimetic
in vitro models for simulation, mechanistic biological studies
and drug testing.74

An overview concerning the application of advanced fabri-
cation strategies of EBB for TE is presented in Table 1.

Tissue bioprinting
Skin

As the largest and highly complex organ of the body, skin
serves as a protective shield against pathogens, irritants, and
antioxidants, physical and UV damage, and any external
harmful agents.75,76 Being in a direct contact with the external
environment makes it highly susceptible to different varieties
of injuries.77,78 Regarding the wound size, extent, and depth,
researchers have been developing numerous types of wound
dressings or natural product-based skin substitutes.79,80

Despite all the advancements attained so far, several limit-
ations with the use of autografts, allografts, and wound dres-
sings81 have led to the development of tissue-engineered skin
substitutes,82 so that they hold great promise for improving
the treatment of skin defects.83,84 In response to the limit-
ations of the mentioned techniques, combined with a foreseen
higher demand for artificial skin,85,86 3D bioprinting was
exploited to facilitate the simultaneous and highly specific
deposition of multiple types of skin cells and biomaterials,
i.e., a process that is lacking in conventional skin tissue-engin-
eering approaches.87

The skin that has almost a thin, layered, and structured
nature, along with easy access to cell sources has promoted the
immediate adoption of 3D bioprinting technology for the skin
TE.88 Furthermore, 3D bioprinting serves as an innovative
strategy to overcome the current impasses in the manufactur-
ing of skin tissue, such as poor vascularization, and the

absence of hair follicles, and sweat glands in the construct.42

Among various 3Dbioprinting techniques, to date, EBB has
been accepted as the most promising approach for generating
skin or soft tissue constructs.76,89

An ideal bioprinted skin should have specific character-
istics such as biocompatibility, desired mechanical properties,
proper surface chemistry, high porosity with a network of
interconnected pores that will allow cells to attach and the
capability of transferring nutrients and eliminating wound
exudates.42 Accessible literature review reveals that a variety of
biomaterials have been widely studied for the generation of
skin grafts,90–92 in which the most common materials are
hydrogels.93–98 However, the commonly available natural poly-
mers besides synthetic polymers cannot provide the complex
microenvironment analogous with the natural ECM.27 This
complexity can be ascribed to the confined data on the
dynamic assembly and interactions of such materials to create
patterned and practical morphologies.99 To combat such
issues, the use of a decellularized ECM (dECM) is currently
receiving immense consideration as a promising alternative
owing to its ability to preserve the complex functional and
structural proteins of the ECM.100 Accordingly, a 3D cell-
printed skin tissue utilizing skin-dECM (S-dECM) was pre-
sented by Cho’s group. As porcine skin is highly similar to
human skin, they successfully used decellularized porcine skin
as a novel bioink, which contains intrinsic factors required for
cell proliferation and showed that the new construct is highly
stable for two weeks with a remarkable wound healing per-
formance in vivo.100 However, the contradiction between the
excellent biocompatibility and poor formability of dECMs
limited their extensive applications. To overcome this chal-
lenge, a modified cryogenic free-form extrusion bioprinter was
developed to directly print a simple decellularized small intes-
tinal submucosal (dSIS) material extracted from porcine skin
(Fig. 2(a)).101 Applying this approach, dSIS scaffolds with excel-
lent physicochemical attributes and enhanced biocompatibil-
ity were fabricated. Owing to the similar chemical composition
of dSIS to the components of dECM (mainly collagens and
polysaccharides), this approach could open a new avenue for
future studies.

Generally, there are two main approaches concerning the
skin EBB for wound treatment:102 (1) in vitro bioprinting where
the printed tissue is transplanted into the defect site and (2)
in situ bioprinting where the bioinks are printed directly into
the defect site. The feasibility of using bioprinting to fabricate
skin constructs in vitro was first shown with multilayered
engineered tissue composites of hFBs and hKCs deposited
layer-by-layer within a collagen hydrogel, resulting in an inner
layer of hFBs and an outer layer of hKCs.103 To be more
specific, a four-nozzle bioprinter was developed utilizing pneu-
matic extrusion supported by microvalve control. Aiming to
obtain multi-layered engineered composite tissues replicating
natural skin layers, ten layers of the collagen hydrogel precur-
sor were deposited, in which human skin fibroblasts (hFBs)
were printed in the second layer, and human keratinocytes
(hKCs) were printed in the eighth layer separately.103 By apply-
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Table 1 Overview of the advanced fabrication strategies of extrusion-based bioprinting for tissue engineering

Strategies Tissue Biomaterialsa Cellsb Ref.

Multi-
dispenser
bioprinting

Skin Collagen type I (rat tail) hFBs, hKCs 103

Collagen type I (rat tail) hFBs, hKCs 104
Bone GelMA, PVA SaOS-2 156

GelMA, silicate nanoplatelets HUVEC, hMSCs 158
Fibrinogen, gelatin, pluronic F127,
silicon perfusion chips

HUVEC, hNDFs, hBMSCs 157

GELMA, pluronic F127 Rat BMSCs 342
Alginate, PVA Rat BMSCs 343
Alginate, PVA, HA MC3T3-E1 142
Gelatin, PVA MG63 344
Alginate, pluronic F127 hBMSCs 345
RGD-γ alginate, PCL Pig BMSCs 133
Alginate, gelatin, PCL, polydopamine
modified calcium silicate

HUVEC Wharton’s jelly MSCs 134

HA, gelatin, atelocollagen, PCL, PLGA MC3T3-E1 137
PCL, alginate MC3T3-E1 136

Cartilage PCL, alginate Chondrocytes 193
Gellan, alginate, BioCartilage
(cartilage extracellular matrix particles)

Chondrocytes 210

PCL, PLGA, TGF 3, CTGF MSCs 346
GelMA, Pluronic F-127 BMSCs, chondrocytes, ACPCs 206
PCL, alginate, PEG hASCs 347

Vascular Gelatin, alginate, fibrinogen ADSC, hepatocyte 224
Alginate, xanthan gum — 225
Alginate Human glioma U87-MG 226

Neural Matrigel, gelatin, fibrin, GelMa,
PEGDA, alginate, methylcellulose

NPCs, OPCs 254

Skeletal
muscle

HA, gelatin, fibrinogen C2C12, NIH/3T3 274

Cardiac
muscle

Heart dECM hCPCs, hTMSCs 314
Fibrinogen, gelatin, aprotinin,
glycerol, HA

NRVCMs 307

Alginate, calcium carbonate iPSCs-dCMs, ECs, RNCMs, HUVECs,
lumen-supporting fibroblasts

318

Coaxial
bioprinting

Skin Alginate, collagen hFBs, hKCs 106

Bone Alginate, collagen MG63, hASCs 159
Alginate, collagen, fibronectin Rat BMSCs 160
HPMC, alginate MC3T3-E1 161
Collagen, GELMA, alginate MC3T3-E1 162

Cartilage GelMa, HAMa ADSCs 215
GelMa, HAMa MSCs 216

Vascular Alginate, CNTs HCASMCs 219
Alginate L929 229
GPT HUVECs, HDFs 56
GelMA, SA, PEGTA HUVECs, hMSCs 231

Neural Alginate, Matrigel hNSCs 251
Alginate MNPCs 252

Skeletal
muscle

mdECM, vdECM hSKMs, HUVECs 289

Smooth
muscle

Alginate HUVSMCs 325
GelMA/C HCASMCs, hBMSCs, HUVECs 328

Hybrid
bioprinting

Electrospinning + EBB Skin Nanofibers: PCL, silk sericin hFBs 118

Struts: chitosan, alginate
Bone Nanofibers: PCL, gelatin MC3T3-E1 165

Struts: PCL
Nanofibers: PCL MG63 166
Struts: alginate

Skeletal
muscle

Nanofibers: PCL, collagen I, C2C12 296

Struts: collagen I, PEO
Nanofibers: PVA C2C12 297
Struts: PCL, collagen I
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ing a similar bioprinting device (but for deploying eight
nozzles), a variable number of layers of cross-linked collagen
and collagen, including either hFBs or hKCs, were printed for
expressing the epidermis, dermis, and dermal matrix of
natural skin tissue. The printed tissue construct was compar-
able to human skin tissue biologically and morphologically
and displayed better shape and form retention through in vitro
cultures.104 Kim et al. engineered a collagen scaffold that had
notably good cellular behavior but poor mechanical stability
regarding the extremely porous structure (>95%) and poor
mechanical characteristics of collagen.105 To overcome this
insufficiency, they produced a core (alginate)/shell (collagen)
scaffold which showed great structural stability, and optimum

quantification of viable and proliferating hFB and hKC cells
when cultured for a 7 day duration (in vitro and in vivo). The
developed construct also demonstrated an approximate
Young’s modulus 6.7 times that of pure collagen, which
mimics the skin modulus.106 In a study reported by Cubo
et al., fibrin-based bilayer dermal constructs were fabricated
utilizing human plasma and primary hFBs and hKCs taken
from skin biopsies.107 The histological and immuno-histo-
chemical in vitro and in vivo analyses indicated that the 3D-bio-
printed skin constructs exhibited a high degree of similarity to
the native human skin. Kim et al.108 used this method to fabri-
cate collagen-based scaffolds with a poly(ε-caprolactone) PCL
mesh, to form the dermal component of a skin substitute. It

Table 1 (Contd.)

Strategies Tissue Biomaterialsa Cellsb Ref.

Nanofibers: alginate, PEO, lecithin
struts: alginate, PCL

MG63 298

Nanofiber: alginate C2C12, HUVECs 299
Struts: PCL, collagen

Cartilage Gelatin, PLGA chondrocytes 211
Microfluidic + EBB Skin Alginate hFBs 116

Alginate, fibrin, collagen I, HA hFBs, hKCs 117
Microfluidic + coaxial
bioprinting

Bone Collagen type I, GelMA, alginate MC3T3E1, ATCC 162
Vascular Alginate, chitosan CPCs 227

Alginate HUVEC 230
PEGOA, GelMA, alginate C2C12, skeletal myocytes, NIH/3T3,

fibroblasts
232

Alginate Fibroblasts, smooth muscle cells, ECs 236
Skeletal
muscle

PEG, fibrinogen C2C12 and BALB/3T3 293
Alginate, PF C2C12 294

Cardiac
muscle

GelMA, alginate HUVECs, RNCMs, hiPSC-CMs 315
Alginate, PF iPSCs-dCMs, HUVEC 316

Smooth
muscle

Small intestine dECM HASMCs, HISMCs 324

General cell
culture

GelMA/alginate HUVECs, MCF7 breast cancer cells,
NIH/3T3 mouse fibroblasts

72

GelMA, alginate HUVECs 73
Microfluidic + multi-
dispenser bioprinting

Bone PCL, Pluronic F-127, gelatin,
fibrinogen, HA, glycerol

hAFSCs 135

Cartilage PCL, Pluronic F-127, gelatin,
fibrinogen, HA, glycerol

Rabbit ear chondrocytes 135

Skeletal
muscle

PCL, Pluronic F-127, gelatin,
fibrinogen, HA, glycerol

Mouse C2C12 myoblasts 135

Gelatin, PCL hMPCs 292
UV-light beam Cartilage GelMa, HAMa IPFP-ASCs 214

Cardiac
muscle

Alginate, methacrylated collagen I,
MeCol, CNTs

HCAECs 317

aGelMA: Gelatin-methacryloyl; PVA: polyvinyl alcohol; PCL: poly(ε-caprolactone); PEG: polyethylene glycol; PEGDA: poly(ethylene glycol) diacry-
late; HA: hyaluronic acid; dECM: decellularized extracellular matrix; HPMC: hydroxypropyl methyl cellulose; CNTs: carbon nanotubes; PEGTA:
4-arm poly(ethylene glycol)-tetra-acrylate; GPT: gelatin-PEG-tyramine; mdECM: skeletal muscle dECM; vdECM: vascular dECM; GelMA/C: blend
of GelMA and nanofibrillar cellulose; PEO: poly(ethylene oxide); Collagen type I: collagen I; PLGA: polylactic-co-glycolic acid; PEGOA: PEG acrylate
with a tripentaerythritol core; PF: polyethylene glycol monoacrylate-fibrinogen; and HAMa: hyaluronic acid–methacrylate. b hFBs: Human skin
fibroblasts; hKCs: human keratinocytes; SaOS-2: sarcoma osteogenic; HUVECs: human umbilical vein endothelial cells; hMSCs: human mesench-
ymal stem cells; hNDFs: Human neonatal dermal fibroblasts; hBMSCs: human bone marrow mesenchymal stem cells; BMSCs: bone marrow
mesenchymal stromal cells; ACPC: articular cartilage-resident chondroprogenitor cells; ADSCs: adipose-derived mesenchymal stem/stromal cells;
hASCs: human adipose derived stem cells; NPCs: neuronal progenitor cells; OPCs: oligodendrocyte progenitor cells; hCPCs: human cardiac pro-
genitor cells; hTMSCs: human turbinate tissue-derived MSCs; NRVCMs: neonatal rat ventricular cardiomyocytes; iPSCs-dCMs: induced pluripo-
tent stem cell-derived cardiomyocytes; ECs: endothelial cells; RNCMs: rat neonatal cardiomyocytes, HUVECs: human umbilical vein endothelial
cells; HDFs: human dermal fibroblasts; hNSCs: human neuronal stem cells; MNPCs: mouse neural progenitor cells; MSCs: mesenchymal stem
cells; HCASMCs: human coronary artery smooth muscle cells; hSKMs: human skeletal muscle cells; HUVSMCs: human umbilical vein smooth
muscle cells; CPCs: cartilage progenitor cells; hiPSC-CMs: human induced pluripotent stem cell cardiomyocytes; HASMCs: primary human
airway smooth muscle cells; HISMCs: primary human intestinal smooth muscle cells; hAFSCs: human amniotic fluid-derived stem cells; hMPCs:
human muscle progenitor cells; IPFP-ASCs: human infrapatellar fat pad derived adipose stem cells; and HCAECs: human coronary artery endo-
thelial cells.
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was exhibited that the incorporation of the PCL mesh could
stabilize the dermal matrix, and prevent collagen shrinkage
during the maturation process. In a recent study, a thermosen-
sitive poly(N-isopropylacrylamide-co-acrylic acid) (p(NIPAAm-
AA)) hydrogel was developed and implemented for various 3D
printing methods (i.e, a single nozzle and a single syringe,
coaxial needles and double syringes, and a single nozzle and
double syringes). Relatively high cell viability of keratinocytes,
fibroblasts and endothelial cells was achieved through 3D
printing of the cell-laden hybrid bioink (p(NIPAAm-AA) and
fibrin). Also, superficial cornification of the epidermis layer as
well as sprouting and splitting of the subcutaneous endo-
thelial cells were inspected.109

In comparison with the transplantation of in vitro fabri-
cated constructs, in situ bioprinting avoids the risk of dama-
ging the thin and fragile construct during transport and hand-
ling, and avoids potential issues related to the correct place-
ment and orientation of a construct with a complex 3D topo-
logy. In one of the first descriptions of in situ bioprinting,
human keratinocytes and fibroblasts were printed directly into

a full-thickness mouse skin-wound model.110 The wounds
were first scanned to obtain precise information on the wound
topography, which then guided the print heads to deposit
specified materials and cell types in appropriate locations. The
first layer of a fibrinogen–collagen hydrogel precursor contain-
ing fibroblasts was bioprinted, followed by the simultaneous
deposition of thrombin to form a fibrin–collagen hydrogel. An
additional layer of keratinocytes was then bioprinted on top of
the fibroblast layer via a similar deposition approach. In
studies by Skardal et al., amniotic-fluid-derived stem cells were
deposited on full-thickness skin wounds in mice, using either
a fibrin–collagen bioink111 or a hyaluronic acid (HA)-based gel
with tuneable properties tailored for extended cytokine
release.112 The secretion of trophic factors accelerated wound-
closure rates and promoted angiogenesis; however, the stem
cells did not permanently integrate into the regenerated skin.
The same approach was recently applied in a porcine model
with large full-thickness wounds, where in situ bioprinting led
to the complete re-epithelialization of the large wound after 8
weeks.113 The main advantage of this approach is the rapid

Fig. 2 3D bioprinting of skin tissue: (a) cryogenic free-form extrusion bioprinting of decellularized small intestinal submucosal (dSIS) scaffolds with
distinctive physicochemical characteristics and enhanced biocompatibility. Reproduced from ref. 101 with the permission of IOP Publishing, © 2018;
and (b) employing a handheld bioprinter to generate skin cell-laden sheets with controllable thickness, width, and composition via incorporating
dermal and epidermal cells into various cross-linkable hydrogels. Reproduced from ref.117 with the permission of the Royal Society of Chemistry, ©
2018.
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coverage of large wounds with permanent skin tissue, and its
accelerated healing.

From the fabrication point of view, advanced approaches
have been considered to satisfy the complex necessities of the
skin tissues. Accordingly, hybrid bioprinting by integrating the
advantages of EBB and other techniques has emerged as a new
method to create scaffolds that mimic targeted tissues.114 In
2012, Leng et al.115 developed a device consisting of a ten-layer
microfluidic device with seven on-chip reservoirs that, in the
following year, was applied to bioprinting of a fibroblast-laden
hydrogel into wound dressings, which were subsequently
implanted into murine wound models.116 Hence, accurate
spatio-temporal control over the cell location and cell seeding
was achieved, and the experimental results revealed enhanced
wound healing, and keratinization was observed. In a remark-
able report by Hakimi et al.117 (from the same research group),
this device was developed into a portable skin printer (weight
<0.8 kg) capable of being applied in swift repairing of deep
wounds. The study demonstrated the in situ production of skin
sheets in porcine and murine wound models as a direct
therapy using skin-specific cells in the bioink. The skin cell-
laden sheets with controllable thickness, width, and compo-
sition were produced by incorporating dermal and epidermal
cells into different cross-linkable hydrogels containing alginate
or fibrin mixed with collagen and HA (Fig. 2(b)).117 Such hand-
held 3D printers could be revolutionary in the prevailing
healthcare market since patients do not have to wait for the
laboratory-grown cellular skin grafts. Additionally, this techno-
logy could be utilized for emergency circumstances such as
burn trauma cases and used for urgent treatment in real-time.
As mentioned before, the preparation of electrospun fibers
into 3D porous biomimetic scaffolds with accurately controlla-
ble shapes and large pores for tissue regeneration has attracted
research attention.59,60 Accordingly, 3D skin asymmetric con-
structs (3D_SAC) were produced using electrospinning and 3D
bioprinting techniques.118 A PCL and silk sericin blend was
electrospun to produce a top layer aimed at mimicking the epi-
dermal features. In turn, the dermis like layer was formed by
printing a chitosan/sodium alginate (SA) hydrogel. The results
obtained from the in vitro assays revealed that the 3D_SAC
display a morphology, porosity, mechanical properties, wett-
ability, antimicrobial activity, and a cytotoxic profile that
enables their application as a skin substitute during the
healing process.118

Over the past four decades, numerous researchers have
undertaken many efforts in the design of human skin tissue
though there are still shortcomings and challenges required to
be overcome. Although the functionality of printed constructs
can be improved through introducing more varieties of cells
and cell numbers, there are still significant hurdles such as
the formation of vascular networks and sensory receptors in
addition to the proper development of hair follicles, pigmenta-
tion, and epidermis generation and maturation. Furthermore,
the emerging organ-on-chip and microfluidic technologies can
considerably assist in replicating as close as possible the
heterogeneous cellular composition of native skin tissue.

Bone

Bone tissue as a dynamic structure is the main constituent of
the musculoskeletal system, and its high mineralization of the
ECM makes it different from other connective tissues in rigid-
ity and hardness.119 The repair of bone tissue is a global clini-
cal issue that causes high morbidity in trauma patients and
imposes an enormous socioeconomic problem.120,121 The gold
standard for bone restoration still generally is autogenous
bone grafts that are harvested from intra- or extra-oral sites;
however, this has the limitation of low graft quantity, donor
site morbidity, and infection. Although many researchers have
made attempts to develop therapeutic approaches for the fabri-
cation of human bone120,122,123 as a highly ordered and vascu-
larized tissue,124 few have succeeded and there is still no
effective treatment for most cases.125–127 As a result, bone
tissue engineering (BTE) is undergoing a booming advance-
ment as an alternative to bone grafting, where graft substitutes
are made using biomaterials to replace or repair damaged
bone defects.124 Among different biomaterials, hydrogels are
considered as promising materials for BTE due to their physi-
cal or structural similarity to natural tissues; however, hydro-
gels often suffer from poor mechanical properties especially in
BTE applications.128 By reviewing the available literature, it
can be observed that some researchers have concentrated on
the requirements for bioinks in 3D-printed bone
scaffolds.120,122,129 For instance, Turnbull and coworkers130 cri-
tically focused on materials and barriers to clinical translation.
They reported the ideal properties of bioactive composite 3D
scaffolds and examined the recent use of polymers, hydrogels,
metals, ceramics, and bio-glasses in BTE. In addition to the
general characteristics of the bioinks in EBB, they should
satisfy the specifications for bone tissue regeneration.131

The challenge of using hydrogels for the fabrication of the
musculoskeletal system via 3D bioprinting should be seriously
considered since a stiff and coherent hydrogel-based construct
would be required for implantation in the human body.132

Accordingly, different strategies have been developed to
enhance the strength of hydrogel-based bioprinted constructs,
including utilizing toughened hydrogels and reinforcement of
printed hydrogels with thermoplastic polymers133–140 or
bioceramics,141–144 nanofibers, nanoparticles,145–148 micropar-
ticles, and microcarriers.149,150 Moreover, the crosslinking of
bioprinted constructs by UV-rays and chemical agents not only
improves their mechanical properties, but could also increase
the stiffness, longevity, and thermal stability of 3D printed
constructs.127,151,152 Despite various attempts having been
made to increase the stiffness of the hydrogel, few have suc-
ceeded. For instance, preculturing of cells in the constructs
has been rejected because of being not economically and prac-
tically possible. Similarly, increasing the hydrogel cross-link
density was declined due to the delay in new tissue formation
by restriction of the nutrients and waste product diffusion
within the highly cross-linked hydrogel system.143

Scaffolds for BTE need to contain a mixture of macropores
allowing cell and osteon ingrowth in vivo and micropores to
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encourage cell–scaffold ligand interactions.130 Increased
scaffold macroporosity has been shown to improve angio-
genesis in vivo, whilst a degree of microporosity (pores with
diameters lower than 10 µm) can improve cell–scaffold inter-
actions, resulting in osteogenic effects. Gupta et al.,146 using
gelatin/carboxymethyl chitin/HA, produced a hierarchical 3D
bioactive scaffold in a cryogenic environment followed by lyo-
philization. While the outer shape and macroporosity were
controlled by the 3D printer, the desirable rough surface mor-
phology and the microporous structure were obtained through
lyophilization. Their result showed that the incorporation of
bulk and surface porosity could lead to an increase in the
water uptake ratio, cell retention capability, cell infiltration,
attachment, proliferation, alkaline phosphatase (ALP) level,
and mineralization.146 However, the microvasculature as a
major challenge in engineering large bone graft substitutes153

is receiving considerable attention because bone is composed
of an extensive vascular system in the medullary cavity that
infiltrates into the bone containing osteocytes within a 100 μm
distance. In traumatic injuries, necrosis of the blood vessels
restricts the supply of nutrients and oxygen to the affected site,
leading to tissue death.124 The current strategy is to implant
synthetic bone grafts, which often fail in the case of critical-
sized defects as the peripheral vasculature does not reach the
core of the construct. Therefore, the formation of congruent
bone largely depends upon the development of a functional
vascular system, which remains a big hurdle in the fabrication
of human-scale constructs.154,155 Several convergent bioprint-
ing strategies used to handle this issue could be explained as
follows: (1) multi-dispenser bioprinting with sacrificial
materials or in combination with thermoplastic polymers and
(2) coaxial bioprinting.

Applying sacrificial inks to create 3D vascular structures
throughout thick bone constructs can increase nutrient
diffusion into an engineered bone graft substitute. Materials
with reversible crosslinking mechanisms (e.g., Pluronic F127,
polyvinyl alcohol (PVA), agarose, and gelatin) are often
employed as the sacrificial bioink.130 In such cases, the vascu-
lar network is fabricated through a fugitive bioink capable of
being eliminated with suitable solvents or thermal modifi-
cation resulting in a perfusable vasculature construct.124 The
origin of these scaffolds can be traced back to the work by
Sawyer et al.156 who scaled up a 3D thick perfused bone con-
struct by printing cell-laden gelatin-methacryloyl (GelMA) with
PVA as a sacrificial polymer. The construct was designed to
have a central horizontal channel that supported a GelMA
hydrogel laden with osteoblast-like cells. This study demon-
strated the potential of using this technology to generate thick
cell-laden constructs containing user-defined channels to aid
the development of vascularized bone constructs.156 In
another example of employing multi-dispenser printing,157 a
3D cell-laden vascularized tissue integrated parenchyma,
stroma, and endothelium into a single thick tissue bioprinted
in a perfusion chip. They printed cell-laden inks composed of
human bone marrow-derived mesenchymal stem cells
(hBMSCs) and human neonatal dermal fibroblasts (hNDFs)

within a customized ECM alongside the embedded vascula-
ture. It was subsequently seeded with human umbilical vein
endothelial cells (HUVECs) in a crosslinking process to create
a thick (1 cm) pervasive vascular network. Finally, it actively
perfused with osteogenic media over more than six weeks.
After 30 days, the printed hBMSCs expressed the highest osteo-
calcin expression in areas close to vessels perfused with osteo-
genic media. Collagen deposition was also found within
printed filaments and around the circumference of the vascu-
lature and alizarin staining also revealed a high degree of min-
eralization within the tissue (Fig. 3(a)).157 Byambaa and co-
workers158 designed a complex bone-like 3D vasculature struc-
ture by printing a vascular endothelial growth factor (VEGF)
functionalized GelMA bioink to fabricate bone and vascular
tissues in one construct through a one-step bioprinting
process.158 The central fiber of the construct formed a perfusa-
ble blood vessel of 500 µm after 12 days of in vitro incubation.
The results demonstrated that synthetic silicate nanoplatelets
can trigger osteogenesis and also induce the osteogenic differ-
entiation of encapsulated human mesenchymal stem cells
(hMSCs) within GelMA hydrogels. Furthermore, the approach
of creating a central lumen using a composite GelMA-nanopla-
telet hydrogel not only indicates the creation of a mechanically
stable construct but also shows the perfusion with growth
medium facilitated cell survival, proliferation, and osteogenic
differentiation over 21 days.158 In brief, prominent advances in
the production of multiscale channels with high accuracy and
suitable biocompatibility have improved the sacrificial EBB of
vascularized thick tissues. A broad range of channel sizes
could be obtained based on the nozzle size and printability of
bioinks. Among various bioinks, thermosensitive polymers are
promising for printing cell-laden vascular constructs. However,
the available literature lacks precise characterization of the
effects of bioink combination and processing parameters such
as pressure and light exposure on the biological characteristics
of fabricated structures.

As explained earlier, coaxial bioprinting is an exciting
approach to fabricate hybrid and vasculature structures.159 The
principal benefit of the core/shell construct is the potential of
forming hierarchical, multi-layer tissue structures with desir-
able biological and mechanical attributes.160 Raja and Yun161

successfully provided bioprinted structures capable of homo-
geneous cell distribution along with performing a load-
bearing function without breaking during tissue regeneration.
It was the first simultaneous 3D printing of cells and biocera-
mics containing a core of α-TCP with a shell of alginate and
pre-osteoblast bone cells. Accordingly, while the hydrogel shell
prevented the immediate failure of the scaffold, even when the
ceramic core was cracked, the construct showed greater
mechanical stability than either brittle ceramics or weak
hydrogels alone. Furthermore, data suggest that there is a
direct connection between the shell thickness and mechanical
properties in which the compressive modulus of each scaffold
increased from 0.9 to 2.2 MPa with a decrease in shell thick-
ness from 150 to 75 μm (Fig. 3(b)).161 As an innovative hybrid
strategy, employment of the cell-laden core with a stable shell

Review Biomaterials Science

544 | Biomater. Sci., 2021, 9, 535–573 This journal is © The Royal Society of Chemistry 2021

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
O

ct
ob

er
 2

02
0.

 D
ow

nl
oa

de
d 

on
 6

/3
/2

02
4 

3:
13

:1
6 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D0BM00973C


was introduced to produce vasculature bone constructs.162

Lee and Kim162 developed a low-temperature 3D bioprinting
method improved with a microfluidic channel and a core/
shell nozzle to fabricate cell-laden constructs for the cryopre-
servation of a cell suspension. The cryopreserved scaffold
showed reasonable viability (∼85%), proliferation, and ALP
activities similar to the non-cryopreserved scaffold.162 It
should be noted that cryopreserved scaffolds have attracted
considerable attention in TE since they can be considered
ready-to-use “living” biomaterials, including a patient’s
cells.163

Following the hybrid bioprinting strategies, the combi-
nation of EBB and electrospinning has also been studied in TE
of bone.164 For instance, a 3D composite scaffold was made
through infusing PCL/gelatin dispersed nanofibers into the
meshes of the PCL construct.165 According to the mechanical
analysis outcomes, the compressive modulus of the scaffold
(30.50 ± 0.82 MPa) was remarkably higher than that of the lyo-
philized electrospun scaffold (18.55 ± 0.56 MPa). Moreover, the
microporous structure of the electrospun scaffold resulted in

better cell proliferation and infiltration on the composite
scaffold. In another study,166 a combination of a 3D printing
system and an electrospinning device was utilized to fabricate
a 3D cell embedded scaffold composed of perpendicular
strands and a thin nanofiber sheet in the succeeding layer.
The cell-laden alginate struts provided steady cell release to
the layered nanofibers, resulting in a uniform cell distribution
(Fig. 3(c)).166

Despite the progress in performing bone bioprinting,
various challenges face the fabrication of clinically appropri-
ate, functional bone grafts. The principal hurdles are (1) con-
struct stability, (2) restricted construct size, (3) vascularization,
(4) lack of mechanical characteristics, (5) integration to native
tissue and (6) long-term function. Clinical translation will
demand the application of integrated bioprinting platforms
allowing the employment of multiple biomaterials to create
biomimetic constructs at a clinically applicable scale. Besides,
multidisciplinary strategies and continued funding are
required to realize accomplishment in this developing research
area.

Fig. 3 3D bioprinting of bone tissue (a) using a sacrificial ink to create 3D cell-laden vascularized tissue integrated parenchyma, stroma, and endo-
thelium into a single thick tissue bioprinted in a perfusion chip. Reproduced from ref. 157 with the permission of the National Academy of Sciences,
© 2016; (b) a cell printing process with a core (α-TCP)/shell (alginate + cell) geometry with a post-fabrication process, involving the crosslinking of
the hydrogel shell and cementation of the ceramic core. Reproduced from ref. 161 with the permission of the Royal Society of Chemistry, © 2016;
and (c) hierarchical scaffolds consisting of micro-sized struts with the appropriate inter-layered nanofibers between the struts supplemented with
osteoblast-like cell-laden alginate struts. Reproduced from ref. 166 with the permission of the Royal Society of Chemistry, © 2014.
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Cartilage

Cartilaginous tissue is an avascular and aneural structure,
including an almost low density of chondrocytes and an abun-
dant water proportion (70%).167 It is a functional and very
hydrated heterogeneous tissue for providing a low-friction,
wear-resistant, and load-bearing surface in diarthrodial joints
for an efficient joint move.36 According to the ECM compo-
sition, cartilage tissue can be classified into three categories,
including elastic cartilage (if elastic fibres are present in the
ECM), fibrous cartilage (if the matrix is rich in collagenous
fibres), and hyaline cartilage (if the matrix is mainly composed
of glycosaminoglycans (GAGs)).168 From the microscopic point
of view, human cartilage is composed of a hydrated ECM,
which is made of proteoglycans consisting of a core protein
with covalently attached GAGs (accountable for the cartilages’
capacity to maintain high compressive loads), mainly chon-
droitin sulphates, and collagen type II fibrils (providing its
high tensile strength and capability of tolerating shear
stresses).169,170

Trauma, accidents, or other infections could cause cartilage
loss, due to its disability to self-repair because of avascularity,
the low proliferation rate of chondrocytes, and its functional
and structural complexity.171,172 Despite the existence of
various treatments for chondral injuries, including autologous
chondrocyte implantation, periosteal grafts, mosaicplasty, and
microfracture, clinical investigations failed to exhibit reliable
generation of normal hyaline cartilage and long-term
solutions.173–175 Moreover, the generation of functional articu-
lar cartilage is challenging concerning the zonal structure of
native tissue, including areas with different cell morphologies
and arrangements, ECM arrangements, constituents, and
distribution.176,177 The introduction of 3D bioprinting in TE
has attained prominent progress in simulating the anatomy of
articular cartilage tissue,178 and among various dispensing
techniques, EBB is the most prevalent and affordable
method.179,180 Applying this particular technique, researchers
have reported the production of cartilage-like constructs
through the combination of various hydrogels;46,181–187

However, the most efficient strategy has involved simultaneous
deposition of thermoplastic polymers utilizing multi-dispenser
systems, while structural materials are capable of maintaining
mechanical forces, and hydrogels act as cell carriers.188–193

Besides, researchers have endeavored to modify bioinks’ attri-
butes, such as their printability, mechanical properties, and
degradation rates.176,177,194,195

For the generation of cartilage constructs, two main strat-
egies of in vitro and in situ bioprinting have been considered
in recent years. Employing the in vitro fabrication approach,
chondrocytes, which can be harvested from various zones of
the cartilage,196 have been deposited in hydrogels (e.g., gelatin
and alginate, alginate, cartilage-dECM, and nanofibrillated
cellulose)197–201 with high cell viability and zone-specific
patterns.202,203 Printing of human chondrocytes in a shear-
thinning nanofibrillated cellulose can also be combined with
cross-linkable alginate to fabricate anatomically formed carti-

lage constructs, with high accuracy and permanence.186

Another approach includes the generation of constructs utiliz-
ing micromass chondrocyte pellets to make cartilage strands,
with tubular penetrable alginate capsules serving as a reposi-
tory for cell aggregation and tissue-strand maturation. This
strategy resulted in ∼500 μm-diameter strands with notably
enhanced cell density, and also increased post-transplantation
maturation and function of the printed tissue.204 Combining
various cell types may also improve the effectiveness of the
engineered cartilage.205 In a research study reported by Levato
et al.,206 three materials were loaded for printing via multi-dis-
penser heads: (1) a superficial zone-mimicking bioink, consist-
ing of articular cartilage-resident chondroprogenitor cell
(ACPC)-laden GelMA, (2) a middle/deep zone-mimicking
bioink, composed of bone marrow mesenchymal stromal cell
(MSC)-laden GelMA, and (3) Pluronic F-127 as a sacrificial ink
to support (MSC)-laden GelMA during the process. The first
seven layers and the last two were printed with the MSC-laden
GelMA and ACPC-laden GelMA, respectively. The co-culture of
cell types in multi-compartment hydrogels allowed generating
constructs with a layered distribution of collagens and glycosa-
minoglycans, defining cartilage with shallow and deep areas,
each with distinguished cellular and ECM combination.206

The combination of MSCs into a layered structure of natural
and synthetic biomaterials can lead the cells to differentiate
into zone-specific chondrocytes, producing native-like articular
cartilage with mechanical and biochemical characteristics
differing with depth.207,208 Similarly, hyaline-like cartilaginous
tissue was created through the bioprinting of induced pluripo-
tent stem cells (iPSCs) within a nanocellulose alginate
bioink.209 In another example of employing multi-dispenser
bioprinting, Kesti et al.210 fabricated cartilage grafts (i.e., 3D
auricular, nasal, meniscal, and vertebral disk grafts) using a
cartilage-specific bioink based on a blend of gellan, alginate,
and a clinical product called BioCartilage (cartilage extracellu-
lar matrix particles). MRI and histological evaluation after 8
weeks in vitro revealed that this bioink supports the prolifer-
ation of chondrocytes and effective deposition of cartilage
matrix proteins (in the presence of transforming growth factor
beta-3). Besides, it was revealed that a cation-loaded transient
support polymer improves physical gelation for structure stabi-
lization.210 Utilizing a similar approach, Kundu et al.193 bio-
printed cartilaginous tissue using PCL and chondrocyte cell-
laden alginate. In vitro cell-based biochemical analysis was per-
formed to determine glycosaminoglycans (GAGs), DNA, and
total collagen contents from different PCL–alginate gel con-
structs. PCL–alginate gels, including transforming growth
factor-b (TGFb), presented higher ECM formation. The histo-
chemical and immunohistochemical analyses of the retrieved
implants (after four weeks of implantation in the dorsal sub-
cutaneous spaces of female nude mice) showed enhanced car-
tilage tissue and type II collagen fibril formation in the PCL–
alginate gel (+TGFb) hybrid scaffold (Fig. 4(a)).193 In 2016,
Kang et al.135 introduced an integrated tissue–organ printer
(ITOP) for the reconstruction of ear cartilage tissue. The bio-
printer was composed of multi-dispensing modules for deliver-
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ing cells and various types of polymers. With the aim of facili-
tating the diffusion of nutrients into printed cells, the fabri-
cated construct incorporated microchannels produced with
the sacrificial molding of Pluronic1 F-127. To determine
whether the printed ear constructs would mature in vivo, they
were implanted in the dorsal subcutaneous space of athymic
mice and were retrieved 1 and 2 months after implantation. It
was confirmed that the shape was well sustained, with con-
siderable cartilage generation upon gross examination. Also,
the histological analysis showed the formation of cartilage
tissue (Fig. 4(b)).135 In a recent study, a novel approach was
presented by Chen and colleagues211 for the fabrication of
electrospun fiber-based scaffolds with accurately controlled 3D
shapes and large pores, as well as fibrous surface mor-
phologies similar to that of the ECM, for cartilage regener-
ation. They processed gelatin/poly(lactic-co-glycolic acid)
(PLGA) nanofibers into inks suitable for 3D printing, and then
electrospun fiber-based inks were fabricated into printed con-

structs through combining 3D printing and freeze drying. The
results exhibited good elasticity and water-induced shape
memory, and scaffolds combined with chondrocytes attained
satisfactory cartilage regeneration in vivo (Fig. 4(c)).211

Regarding the shortcomings due to the implantation of the
prefabricated construct, the concept of in situ bioprinting of
cartilage tissue was introduced by Cohen et al.212 Applying geo-
metric feedback-based approaches, they fabricated 3D
implants using alginate and chondrocytes for in situ repair of
cartilage injuries. In another study, Li et al.213 achieved the
accurate size of defect regions of cartilage with the help of
high-resolution 3D scanning and next applied in situ 3D bio-
printing for injury rehabilitation ex vivo. Subsequently, a hand-
held pneumatic extrusion device “Biopen” was designed by
O’Connell et al.214 concerning in vivo repair of osteochondral
injuries. The novel nozzle design allowed the deposition of
multiple inks in a collinear geometry. In vitro investigations
revealed high viability (>97%) of human adipose stem cells in

Fig. 4 3D bioprinting of cartilage tissue: (a) fabrication of cartilaginous tissue using PCL and chondrocyte cell-laden alginate via multi-dispenser
bioprinting. Enhanced cartilage tissue and collagen (type II) fibril formation was revealed via histochemical and immunohistochemical analyses of
the retrieved implants after 4 weeks. Reproduced from ref. 193 with the permission of John Wiley & Sons, Ltd., © 2013; and (b) fabrication of carti-
lage tissues utilizing an integrated tissue–organ printer (ITOP). The results manifested the generation of ear-shaped cartilage with resilience charac-
teristics similar to those of the rabbit ear. Reproduced from ref. 135 with the permission of Nature America, Inc., © 2016. (c) fabrication of electro-
spun fiber-based 3D scaffolds with controlled 3D shapes and large pores as well as an ECM biomimetic surface structure. The chondrocyte-laden
scaffolds received satisfactory cartilage regeneration and form preservation in vivo. Reproduced from ref. 211 with the permission of Elsevier Ltd., ©
2019.
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one-week post-printed hydrogels (GelMa + HAMa). Afterward,
the same research group promoted Biopen via designing a co-
axial nozzle that facilitated the simultaneous co-axial extrusion
of the bioscaffold and cultured cells directly into the cartilage
defect in a single session in vivo surgery.215 They tested Biopen
to develop core/shell GelMa/HAMa bioscaffolds that have a
mechanical strength of 200 kPa and high cell viability (>90%)
for chondral repair. The results manifested that the core/shell
geometry preserves the cells from the printing process and
damaging consequences of the free radicals produced by the
photo-activation process. This handheld Biopen was also
employed to study the rehabilitation of full-thickness chondral
defects in a sheep’s stifle joints which exhibited safety and
potential clinical effectiveness.216 The outcomes demonstrated
that the in vivo 3D-printed bioscaffold bears better macro-
scopic and microscopic properties and shows an immediate
configuration of hyaline-like cartilage. This study was signifi-
cant as it involves primary in situ 3D bioprinting, which can be
a key step toward the clinical employment of bioprinting
technology.

In a recent study, the application of a robotic-assisted
in situ 3D bioprinting technology for cartilage regeneration
was reported. A bio-ink including hyaluronic acid methacrylate
and acrylate-terminated 4-armed polyethylene glycol was
employed, and an in vitro experiment was conducted on a
resin model. Also, to assess the cartilage treatment aptitude,
the in vivo analysis was performed on rabbits. Based on the
results, the osteochondral injury could be repaired in about 60
s, and the regenerated cartilage tissue exhibited the same bio-
mechanical and biochemical performance in hydrogel implan-
tation and in situ 3D bioprinting. It was observed that the pre-
sented method is very suitable for surgical procedure improve-
ment, as well as enhancing cartilage rehabilitation.217

Further improvements in 3D bioprinting will permit the
production of patterns of growth factors, mechanical gradi-
ents, and stem cells in each zonal region of cartilage, enhan-
cing the function of bioengineered cartilage tissue. It has been
shown that 3D-printed cartilage can possess the histological
and mechanical properties of human auricles after implan-
tation in vivo.135

Vascularization

Vascularization plays a critical role in governing the regener-
ation of thick tissues such as the heart, liver, pancreas,
kidneys, and bone. It is required to provide oxygen and nutri-
ents for cells and remove waste products out of tissue through
a network.218,219 Despite the significant advancement in tra-
ditional biofabrication methods, the development of 3D vascu-
lar like networks remains a big challenge in the TE area. To
address this issue, 3D bioprinting has been introduced as a
promising approach to fabricate highly organized vascular
structures within engineered tissue substitutes.220,221 The
main features in engineering vascular tissue are the multi-
scale and branched vasculature structure as well as proper
mechanism of convective–diffusive transport.222 Bioprinting
approaches for the fabrication of a vascularized tissue scaffold

could be categorized into direct and indirect approaches.
Applying the direct strategy, lumen-containing strands would
be fabricated within the scaffolds, while using the indirect
approach, vascular networks would be formed within the
scaffolds through removing sacrificial strands.223

Direct bioprinting of a vascular network allows biopolymers
or hydrogels to dispense in the form of strands to form
scaffolds. To the best of the authors’ knowledge, EBB of hydro-
gels for vascular network formation has been first reported by
Li et al.224 They developed a double-nozzle assembling method
to fabricate a vascular like network with embedded hybrid
hydrogels according to predesigned digital models for the cre-
ation of liver-like constructs. Gelatin/alginate/fibrinogen
encapsulated with adipose-derived stromal cells (ADSC) and
hepatocytes were used as bioinks. A solution of thrombin/
CaCl2/Na5P3O10 was used to allow the sol–gel transition of
gelatin and crosslinking of fibrinogen and alginate. After two
weeks of cell culture, the hepatocytes performed some liver
like metabolic functions and ADSC showed some endo-
thelium-like cell properties, while the construct maintained its
integration. Application of multi-nozzle EBB in a vertical con-
figuration for vascular reconstruction was later described by
Tan et al.225 who designed a tubular alginate construct with
12 mm diameter and 15 mm length. In their work the cross-
linking agent was provided through a concentric loop of 8 mm
diameter. The quantifiable parameters such as the tubular
length, wall thickness and roundness have been proposed to
characterize the quality of the printed materials. Creating
more complex structures including branched tubes with large
diameters is one of the important advances in EBB which was
reported by Ghanizadeh et al.226 Besides this development,
they used a three-stage crosslinking process to provide better
printability, more rigidity after printing, and long term stabi-
lity of the alginate hydrogel in culture medium.

A coaxial nozzle assembling technique as a category of EBB
has also been considered for 3D bioprinting of vascular net-
works. In a study by Zhang et al.,227 vessel-like cellular micro-
fluidic channels were developed through coaxial 3D printing
of the alginate hydrogels loaded with human umbilical vein
smooth muscle cells (HUVSMCs) followed by a crosslinking
process to form a hollow filament. The tubular filament was
evaluated for its perfusion, permeability and cell viability.
Regarding the application of an artificial vascular network, the
engineered constituent should possess desirable mechanical
elasticity and strength for pulsatile stress and suture
retention.219,228 The mechanical properties of tubular con-
structs printed using a coaxial system have been proved to be
improved by the incorporation of carbon nanotubes (CNT) in a
study by Dolati et al.219 They reinforced the alginate based con-
duits with CNT to enhance their mechanical properties and
bioprintability. The results showed that the tensile strength
could be increased by ∼1.5–2.1 times with different concen-
trations of fillers. Gao et al.229 introduced a new configuration
into coaxial bioprinted conduits, with a Z-shape platform for
layer-by-layer deposition of alginate hollow filaments to form a
3D structure with built-in microchannels. Using this method,
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a high strength structure could be obtained by applying a
higher concentration of alginate and a smaller distance
between adjacent filaments. Moreover, the built-in microchan-
nels resulted in higher cell viability. In a similar study by
Attalla et al.,230 a multi-layered structure of alginate hollow fila-
ments with a complex geometry was fabricated using an open-
source 3D printer with a custom-built microfluidic nozzle.
With this system, a precise control of the channel position,
spacing, and diameter was possible. In another study, a
coaxial EBB was used for the fabrication of cell laden vascular-
like structures from a blended hydrogel system of GelMA/SA/
4-arm poly(ethylene glycol)-tetra-acrylate (PEGTA).231 Two
different crosslinking systems including ionic crosslinking (by
CaCl2 solution) and photocrosslinking were applied to obtain
stable constructs. This blended hydrogel system demonstrated
the desired rheological properties and printability. Moreover,
the 3D-printed constructs showed sufficient mechanical
strength and biological properties. This work was further pro-
moted by Pi et al.232 such that a more complicated hollow
structure using GelMa-based bioinks was developed using a
digitally tunable multi-layer coaxial nozzle printing. The
GelMA/alginate hydrogel was printed in the form of a circum-
ferentially multi-layered hollow tissue construct, and eight-arm
poly(ethylene glycol) (PEG) acrylate with a tripentaerythritol

core (PEGOA) was used to improve the mechanical strength
and stability of the deposited hydrogels. Fig. 5(a) represents
the schematic illustration of the components of the multi-
channel coaxial extrusion system and cross-sectional views of
the hollow structures. The figure also shows the walls of a
single-layered and a double-layered tube, colored fluorescently.
The figure reveals that a wide range of cell types was tested for
viability and proliferation which demonstrated favorable cell
growth and maturation.232

The ECM-related parameters such as the deposition and
alignment of collagen and elastin are crucial in vascular tissue
engineering. Regarding this, creation of a scaffold-based vascu-
lar substitute with a small diameter and mechanical properties
close to native vascular tissue still faces general and specific
challenges. Additionally, applying scaffolds causes extra pro-
blems, such that the mechanical strength of gels is naturally
weak which may hinder the final strength of the tissue-engin-
eered vascular like substitute. Also, the biodegradation by-pro-
ducts of the polymer can disrupt the normal organization of
the vascular wall and even affect the smooth muscle cell phe-
notype. Such issues led to the introduction and investigation
of scaffold-free bioprinting using cellular spheriods based on
the self-assembly approach.233 In a study by Norotte et al., a
fully biological engineered scaffold-free vascular substitute was

Fig. 5 3D bioprinting of vascular tissue: (a) schematic showing the components of the multichannel coaxial extrusion system and cross-sectional
views of the hollow structures of GelMa-based bioinks, showing walls of a single layered tube and a double-layered tube. Reproduced from ref. 232
with the permission of WILEY-VCH Verlag GmbH & Co., © 2018; (b) an overview of multi-level fluidic channels composed of macrochannels and
microchannels, the longitudinal section of the single layer structure, and the printed vessel-like structure containing three kinds of vascular cells
with three colors: red-L929, green-MOVAS, and orange-HUVEC. Reproduced from ref. 236 with the permission of American Chemical Society, ©
2017; (c) schematic illustration of the inflammation-mediated process for vascular remodeling, optical images of the implanted grafts with the
in vivo view (left) and in vitro view (right) after 1 month, and blood flow (39.4 cm s−1) assessed using ultrasonography 1 day after implantation.
Reproduced from ref. 235 with the permission of American Chemical Society, © 2019.
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developed using various vascular cell types. The cells were de-
posited simultaneously with agarose rode, used as the
molding template. The distinct cellular units were further
fused to create single- and double-layered vascular tubular
grafts with small diameters (outer diameter: 0.9–2.5 mm). The
method was shown to be accurate, reliable, and scalable.234

In a recent study, Zhou et al.235 introduced a convenient
and efficient technique, designated as the interfacial diffusion
for creating vascular tissue grafts. In this method, a hydrogel
material was extruded into another medium and subjected to
a diffusion gelation process. Upon changing the gelation time
and nozzle size, the diameter of the printed tubes was
changed. In order to increase the tube resistance again
internal pressure, bacterial cellulose nanofibers were loaded
into the hydrogel system. The developed vascular graft was
evaluated for in vitro and in vivo assays which demonstrated
the mechanical stability of the graft in rabbit carotid artery re-
placement. Fig. 5(c) shows a schematic illustration of the
inflammation-mediated process for vascular remodeling and
macroscopic observations of the vascular graft harvested after
implantation for 1 month. Moreover, ultrasonography clearly
shows that the blood flows normally at a speed of 39.4 cm s−1

in the grafted vascular 1 day after the implantation.235

Design and development of multi-level fluidic channels
composed of macrochannels (for mechanical stimulation) and
microchannels (for nutrient delivery) integrated into an organ-
on-chip device have been reported by Gao et al.236 They 3D-
printed alginate hollow filaments loading L929 mouse fibro-
blasts and smooth muscle cells (SMCS) as separate layers over
a rod. Fig. 5(b) shows an overview of the printed device of a
single-layer structure with a length of 70 mm, a double-layer
structure with a length of 60 mm and a longitudinal section of
the single-layer structure. The developed structures showed
relatively strong mechanical properties (due to the progressive
crosslinking reaction) and high cell viability (91.4% after 7
days of culture). A printed vessel-like structure containing
three kinds of vascular cells is shown in Fig. 5(b).236 In conven-
tional EBB, surface tension and gravity influence the filament
formation, morphology and diameter which may cause defects
during 3D printing. Jin et al.237 reported the application of a
yield stress support bath for decreasing the effects of surface
tension and gravity on filament formation. The alginate/
gelatin blend as a hydrogel precursor was printed in a
LAPONITE® nanoclay yield-stress bath. Their results demon-
strated that the nanoclay concentration significantly influences
the morphology of the printed filaments. They further used
this deposition approach for producing branched vascular like
structures. The cell viability was shown to be around 90% after
3 days of culture. Indirect EBB was introduced to avoid some
limitations of direct EBB including flowing of low viscosity
hydrogels (such as alginate, collagen and fibrin) in contact
with the substrate or collapsing of printed layers. In this
method, a slurry bath was applied in which the nozzle could
move around to print the ink without any resistance. After
printing, the slurry can be removed by thermal or chemical
means, while the solidified hydrogel forms a vascular

pattern.223 This method is also applicable in creating channels
inside the bulk hydrogels. In this case, the printed tubes are
removed from the hydrogels to form the channel embedded
hydrogels.238,239 Using this approach, Bertassoni et al. reported
a 3D micromolding method utilizing agarose fibers as a per-
missive template to create a perfusable microchannel network
inside GelMA (gelatin methacryloyl) hydrogels.240 Their results
indicated that the fabricated microchannel embedded hydro-
gels showed enhanced mass transport, cell viability (more than
90%) and differentiation.

Application of sacrificial moulding to produce rigid lattices
of filaments using 3D bioprinting was reported by Eltaher
et al.241 They described the development of high-resolution
structures based on a flexible sugar–protein composite by
casting during 3D printing to form sacrificial vessels. Thin
endothelialized vessel walls were created by the incorporation
of biocompatible crosslinkers. Moreover, it was demonstrated
that the perfused vascular channels sustain the metabolic
function of primary human cells. In a very recent work by Tsai
et al.,242 a non-sacrificial gel system containing a sacrificial
borate ester hydrogel was prepared to create tubular micro-
channels. In this hydrogel system, N-isopropylacrylamide, pen-
tafluorophenyl acrylate, poly(vinyl alcohol), and cellulose
nanofibrils were applied for thermoresponsiveness, post-modi-
fication, gel formation and 3D printing facilitation, respect-
ively. To obtain 3D vascularized constructs, the non-sacrificial
gel was cast on the sacrificial printed hydrogel followed by
immersion into the culture medium, which resulted in creat-
ing interconnecting multiple channels in 5 min. The devel-
oped constructs exhibited vascular endothelial cell
proliferation.

Biofabrication of living tissues and organs considerably
relies on the vascularization. Despite the great advancement in
common biofabrication approaches, creating a hierarchical
perfusable vascular network with anatomical exactitude, and a
heterocellular structure remains the main challenge. To date,
significant progress has been made in generating perfusable
branched vascular networks and vascularized tissue; however,
much effort must be made in fabricating small-diameter vas-
cular grafts with a complex microarchitecture and fully biologi-
cal functions. Moreover, employing new bioinks based on
functionalizing synthetic biomaterials, dECM, and autologous
cells will result in clinically derived development in vascular-
ized tissue substitutes. Furthermore, the engineered materials
should possess superior mechanical properties such as elas-
ticity, similar to native vascular tissue.

Neural

The regeneration of nerve defects/damage such as acute trau-
matic injuries (including brain injuries and spinal cord inju-
ries) and neurological diseases (including stroke, Alzheimer’s
disease, Parkinson’s disease, multiple sclerosis, and
Huntington’s disease) is one of the most challenging clinical
issues worldwide.243,244 Development of nerve 3D models
mimicking the native ECM has emerged as one of the promis-
ing strategies to reconstruct defective nervous tissues.
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Generally, the neural model should possess specific require-
ments including: neurocompatibility to allow attachment and
proliferation of nerve cells, elastic properties/hierarchical
microarchitecture to mimic the mechanical/physicochemical
features of the native nervous tissue ECM, and ability to cause
electroconductivity.245 Among all 3D bioprinting methods,
EBB in particular showed advantages in developing neural
tissue models due to its compatibility with processing the
broad range of materials set, including cell suspensions, cell-
laden hydrogels, solutions, thermoplastics, thermosets, and
elastomers.246 A lack of appropriate neural bioinks which can
properly mimic the mechanical/chemical characteristics of the
native ECM is one reason for relatively fewer available reports
on the application of EBB in neural regeneration. In a recent
study by Haring et al.,247 a filler free bioink was developed.
This bioink was made by crosslinking of thiolated Pluronic
F-127 with dopamine-conjugated gelatin and dopamine-conju-
gated HA through a thiol/catechol reaction. Schwann cell-,
rodent neuronal cell-, and human glioma cell encapsulated
bioinks were used to form neural constructs. In another work
on designing suitable bioinks that possess proper mechanical
properties while promoting cell proliferation and tissue for-
mation, Hsiao et al.248 synthesized a dual stimuli-responsive
biodegradable polyurethane hydrogel. The advantage of the
developed hydrogel bioink was its relatively low viscosity that
could avoid excessive fluid shear stress and potential for
jamming during extrusion. Moreover, the proper structure
strength and shear yield stress of the hydrogels could bear the
weight of ink without obviously changing the shape of stack-

ing fibers. Their results also demonstrated that the printed
constructs were conductive to proliferate and growth of NSCs
as well as their differentiation into neural cells.

The first attempt in biofabrication of a fully cellular nerve
graft composed exclusively of cells and cell secreted material
was reported by Owens et al.249 Mouse bone marrow stem cells
and Schwann cells were printed in an agarose mould followed
by the removal of the mould after 7 days. The developed graft
was successfully implanted into rats suffering from sciatic
nerve injury and tested for both motor and sensory functions.
Lozano et al.250 utilized a handheld reactive bathless 3D
printer to develop brain-like structures made of discrete layers
of neural cells encapsulated in arginine–glycine–aspartate
(RGD) peptide modified gellan gum hydrogels. Primary corti-
cal neurons and glial cells were successfully encapsulated in
the 3D-printed hydrogel, and higher survival and networking
of cells were observed in RGD-coupled gellan gum than in
pure gellan gum. Fig. 6(a) depicts the schematic representation
of brain layer structures and cortical neurons encapsulated in
RGD-gellan gum after 5 days of culture.250

3D bioprinting was applied to develop a spatial cell culture
system, in which the 3D-printed sub-millimetric hollow algi-
nate spheres, encapsulated with neuronal stem cells (NSC) and
coated internally with Matrigel (a layer of the ECM) a few
microns thick, were generated.251 Utilizing a coaxial flow
device, a multi-layered jet from the alginate hydrogel was
formed. The inner wall of the capsules was shown to be deco-
rated with a Matrigel layer anchored to the alginate hydrogel
mimicking the basal membrane of the cellular niche. Fig. 6(b)

Fig. 6 3D bioprinting of nerve tissue: (a) schematic representation of brain layer structures and cortical neurons encapsulated in RGD-gellan gum
after 5 days of culture and confocal microscopy images of neuronal 3D culture models after 5 days of culture. Reproduced from ref. 250 with the
permission of Elsevier Ltd., © 2015; (b) diagram of the co-extrusion set-up, schematic illustration of a neuronal capsule, and micrographs of a fixed
neuronal capsule by bright field microscopy and fluorescence confocal microscopy. Reproduced from ref. 251 with the permission of the Royal
Society of Chemistry, © 2016; and (c) schematic of the spinal cord designed for a 3D-bioprinted multichannel scaffold modeling, schematic overview
of the 3D bioprinting process, and an image of 3D-printed different cell encapsulated channels showing mature neuronal marker expression.
Reproduced from ref. 254 with the permission of WILEY-VCH Verlag GmbH & Co., © 2018.
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exhibits a schematic illustration of the neuronal capsule. The
developed 3D-printed microfluidic device was able to differen-
tiate cells into neurons within the hydrogel, while maintaining
the cell viability. The DAPI staining of the cell nuclei and
tubulin subunit Beta3 staining of mature neuritis are illus-
trated in Fig. 6(b).251 Coaxial EBB was also used in another
study to produce cell-encapsulated hydrogel structures and
core–shell cell fibers as cell-laden frameworks in regeneration
of neural tissue. In that study, SA was used as a bioink to
encapsulate mouse neural progenitor cells. In cell-encapsu-
lated structures, the cells were separated, while in cell fibers
they were directly connected. The cells also showed a stronger
tendency to undergo differentiation in cell fibers compared to
another investigated structure.252

As discussed earlier, one of the main applications of 3D
printing is creating cell-based tissue constructs. In this regard,
the first work on direct-write printing of an hNSC encapsulated
hydrogel to fabricate a 3D neural mini-tissue construct was
reported by Gu et al.253 They applied a micro-EBB to print a cell
encapsulated alginate/agarose/carboxymethyl cellulose-based
construct. The cells showed desirable viability, differentiation
into functional neurones, as well as formation of synaptic con-
tacts and networks. Moreover, calcium imaging together with
scanning electron microscopy (SEM) imaging of neurons and
neuritis revealed that the cells can reasonably model the form
and activity of human neural cells. Similarly, Joung et al.254

developed a 3D-printed neural tissue construct in the shape of
spinal cord containing neuronal progenitor cells (NPCs) and oli-
godendrocyte progenitor cells (OPCs) using a one-pot printing
process. Fig. 6(c) shows a schematic of the spinal cord designed
for a 3D-bioprinted multichannel scaffold modeling along with
a schematic overview of the 3D bioprinting process. The 3D
scaffold was fabricated through the sequential deposition of a
multiple cell laden bioink (cell containing a Matrigel matrix,
gelatin/fibrin, GelMa) and a scaffold ink (poly(ethylene glycol)
diacrylate, alginate, and methylcellulose) in a layer by layer
manner to create multiple channels. This work was the first
attempt in 3D printing of neuronal progenitor cells with differ-
entiation into neurons with extended axons propagation. The
printed construct showed cellular viability which maintained
cell specific phenotype properties in response to the printed
microenvironment, and the cell scaffold interactions are given
in Fig. 6(c) as neural marker expression.254

To date, numerous research studies have been devoted to
designing biomimetic constructs for nerve tissue engineering
via integration of multiscale micro- and macroenvironments.
Accordingly, a very recent study presented 3D bioprinted
scaffolds based on GelMA/chitosan microspheres prepared
through a microfluidic system. Cell–scaffold interactions were
studied by co-culturing PC12 and Schwann cells.255 The results
revealed that such a multiscale composite structure with
hydrogel microspheres gave a decent 3D microenvironment for
neurite growth enhancement, and the 3D printed hydrogel
network provided a 3D macroenvironment resembling the epi-
neurium layer for Schwann cell proliferation and nerve cell
arrangement.255

In summary, although successful fabrication of the engin-
eered nerve constructs was achieved through multiple-dispen-
sers and coaxial extrusion bioprinting, future advances in
materials will likely enable more flexibility to cell compatibility
and adhesion while retaining printability. Furthermore, it
seems that four-dimensional (4D) printing256,257 is also
gaining attention as an emerging method for obtaining exter-
nal stimuli-responsive constructs and overcoming some limit-
ations of 3D bioprinting technologies in creating high-resolu-
tion constructs.

Muscular

Approximately half of the human body’s weight is muscle. It is
the only tissue in the body that can contract or shorten, so all
body movements include muscle of some kind.258 In the mus-
cular system, muscle tissue is classified into three primary
types, i.e., skeletal, cardiac, and smooth, with a unique struc-
ture and a particular role.259 3D bioprinting has made excep-
tional progress in various fields, and it also provides an inno-
vative approach in muscle TE. On reviewing the literature, it
can be observed that the researchers worldwide investigated
the regeneration of muscle tissues within the context of hydro-
gel-based EBB.

Skeletal muscle

Serving about 45% of the human body weight including over
600 various types, skeletal muscles are involved in skeletal
support, stability, movement, and even in the regulation of
metabolism.260,261 Skeletal muscle TE (SMTE) intends to
develop functional skeletal muscle constructs262,263 to replace or
to restore damaged tissues, representing in vitromodels for com-
prehending the growth mechanisms of the muscular system,
and for examining different drugs for the remedy of ‘muscular
injuries and illnesses’.264,265 Human skeletal muscle is com-
posed of complex anatomical structures, including uniaxially
ordered myotubes and widely distributed blood capillaries.
Accordingly, vascularization is a crucial part of the successful
development of engineered skeletal muscle tissue.106 Despite
significant advances in SMTE using various conventional
methods, the forces generated from engineered skeletal muscle
tissues are yet low compared to their natural counterparts, and
there is a lack of accurate 3D spatial cell organization.266–268

Mimicking the extremely packed and arranged cellular structure
of the native muscle tissue, by employing natural or synthetic
scaffolds and microscale technologies, is essential for successful
SMTE.269,270 3D bioprinting has emerged as a powerful micro-
scale technology for SMTE.271,272

Hydrogels containing muscle precursor cells have been
widely used as bioinks in combination with support
structures in thermoplastic polymers273,274 and/or sacrificial
materials135,275–277 to attain a proper arrangement of cell-laden
fibers capable of mimicking the native muscle tissue.263

Different studies have investigated the propriety of the GelMA
hydrogel and its composites with various nanomaterials for
SMTE.72,264,278,279 Some solutions have been proposed to
provide high cellular viability and function of skeletal muscle
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cells, such as applying optimized alginate concentration com-
bined with a suitable crosslinking method.271,280 The adminis-
tration of growth factors (locally or systemically) has also pre-
sented great promise to stimulate angiogenesis, stem cell
recruitment and differentiation, cell survival and proliferation, a
decrease of apoptosis, and adaptive remodeling.281,282 However,
a significant restriction is that factor-eluting scaffolds ordinarily
release a single factor and, based on their origin, these proteins
are high-priced, which could result in disease transmission or
inflammation. It has been demonstrated that platelet-rich
plasma (PRP) could address these challenges by releasing bio-
logically active proteins and growth factors over several days as a
remedy for musculoskeletal diseases.283 For instance, a patient-
specific bioink has been generated via loading an alginate
bioink with PRP for angiogenesis enhancement, inflammation
reduction, stem cell recruitment, and cardiovascular and skel-
etal muscle tissue regeneration.284

Skeletal muscle tissue has a complex multicellular aniso-
tropic structure concerning the nervous and vascular networks.
Such complexity can be achieved through the use of more com-
plicated bioprinting processes combining various techniques,
bioinks, and cell types.285,286 Moreover, the gelled bioink should
have similar mechanical characteristics to skeletal muscle tissue.
Although hydrogel-based 3D engineered muscles, dECM
scaffolds, and acellular biological scaffolds have been widely
investigated for volumetric muscle loss (VML) treatment,287,288

they have shown limited efficacy. Accordingly, Choi et al.289 pro-
posed a novel VML treatment using a tissue-derived bioink for
bioprinting of vascularized volumetric muscle constructs.
Human skeletal muscle cells (hSKMs) and human umbilical
vein endothelial cells (HUVECs) were blended in skeletal muscle
dECM (mdECM) and vascular dECM (vdECM) bioinks, respect-
ively, for coaxial bioprinting of them into thick constructs. The
prevascularized muscle constructs exhibited enhanced cell viabi-
lity without generating hypoxia, myotube formation, and de novo
myofiber regeneration in a VML rat model. In vivo outcomes
revealed that coaxial nozzle printing mimicked the hierarchical
structure of vascularized muscles, and allogeneic human cells in
the constructs increased vascularization, innervation, and also
85% of functional recovery witnessed in VML injury.289 But, due
to the low mechanical properties of gels made with dECM-based
bioinks, it may require stiffening utilizing crosslinking agents,
or blending with different components.48,290 Despite promising
outcomes, the disadvantages of dECM-based bioinks are the
batch-to-batch variability and the possible immune responses
they may induce in vivo upon implantation.272

Reviewing the available literature revealed that despite
notable advances in SMTE through bioprinting, the level of
organization of differentiated muscle precursor cells—i.e., the
arrangement of sarcomeres, the production of long-range mul-
tinucleated myotubes and the degree of their alignment—was
limited, most probably due to substrate mechanical character-
istics and matrix density issues.272,291 A strategy that is gaining
significance consists of employing the advantages of EBB com-
bined with other scaffold fabrication technologies, to construct
advanced structures that mimic skeletal muscle tissue.

In 2015, Lee and colleagues274 introduced a novel method
for the 3D biofabrication of complex structures based on multi-
dispenser bioprinting. Employing a 3D integrated organ print-
ing (IOP) system, a C2C12 cell-laden hydrogel-based bioink was
co-printed with polyurethane (PU) on one side, and an NIH/3T3
cell-laden hydrogel-based bioink was co-printed with PCL on
the other side for elasticity and muscle development, and
stiffness and tendon development, respectively. The results
demonstrated the versatility of the IOP system to fabricate
complex tissues such as the musculoskeletal system, which have
regional diversity in cell types and mechanical characteristics.274

They promoted the system and presented the ITOP system
capable of fabricating stable, human-scale tissue scaffolds of
any shape, and providing microchannels with a porous lattice
pattern that promoted nutrient and oxygen diffusion into the
printed tissue scaffolds which resulted in enhanced tissue for-
mation. Applying the ITOP, they fabricated organized skeletal
muscle constructs (15 × 5 × 1 mm3) which were eventually
implanted subcutaneously in athymic nude rats. The outcomes
demonstrated evidence of vascularization without necrosis and
newly formed oriented myofiber bundles.135 In the following,
they extended their strategy to treat muscle defect injuries utiliz-
ing human cell-laden skeletal muscle constructs. Accordingly,
3D skeletal muscle constructs (up to 15 × 15 × 15 mm3) were
fabricated that maintained long parallel multi-layered bundles
of densely packed, extremely viable, and aligned myofibers.292

An in vivo study in a rodent model of tibialis anterior (TA)
muscle defect after 8 weeks of post-implantation showed 82%
of functional rehabilitation. Besides, histological and immuno-
histological analyses revealed the effective integration of bio-
printed constructs with host vascular and neural networks. The
results confirmed the potential application of the 3D-bioprinted
skeletal muscle with a spatially organized structure in recon-
structing extensive muscle injuries.292

Inspired by the native structural morphology of skeletal
muscles, Costantini et al.293 introduced an innovative hybrid
3D bioprinting approach to fabricate skeletal muscle tissue
with functional morphologies. The technique was based on a
microfluidic printing head linked to a co-axial needle extru-
der for high-resolution 3D bioprinting of aligned hydrogel
fibers encapsulating muscle precursor cells (C2C12). The
muscle myofibers exhibited sarcomeric organization and
improved muscle regeneration in immunocompromised
mouse models. Applying such an approach could lead to an
enhanced myogenic differentiation with the formation of par-
allelly aligned, long-range, and tightly packed, myotubes,
hence mimicking the natural tissue morphology and organiz-
ation more intimately. More recently, Testa et al.294 used the
same approach and printed human muscle cells obtained
from perivascular and pericyte stem cells to treat sphincter
muscle injuries. The results of a pre-clinic study confirmed
the feasibility of their innovative approach to treat the forms
of fecal incontinence that are unresponsive to conservative
therapies.

As a novel research line, Kim and colleagues have focused
on the 3D fabrication of a group of muscle fibers forming a
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fascicle via EBB combined with electrospinning.295–299 They
proposed a new cell-laden scaffold, including macro-sized
struts for providing a 3D structural shape, aligned nanofibers,
and cell-printed myoblasts. The results showed higher sarco-
meric formation and differentiation on the seventh day of
culture on collagen-coated aligned fibers and aligned fiber
constructs in comparison with random fiber scaffolds.
Besides, the incorporation of micro/nanofibers in the hierarch-
ical scaffold significantly influenced myoblast proliferation
and alignment, and even promoted the creation of
myotubes.295,296 In another example of biomimetic muscle
bundle fabrication, analysis of cells revealed a longitudinal
cell alignment, high cell infiltration between the microfibers,
and excellent cell proliferation on the surface, and a construct
mimicking a muscle bundle section was obtained.297 Based on

this initial success, they have recently studied the application
of this platform in co-culturing HUVECs and C2C12 cells.299

To be more specific, the HUVEC-laden alginate bioink was uni-
axially electrospun on the surface of PCL and collagen struts
as mechanical supports by a topographical cue. The electro-
spun HUVECs exhibited high cell viability (90%), homo-
geneous cell distribution, and effective HUVEC growth.
Moreover, the myoblasts, which were seeded on the vascular-
ized structure (HUVEC-laden fibers), were co-cultured to help
achieve myoblast regeneration. In comparison with the
scaffold that comprised only myoblasts, the construct that
included myoblasts and HUVECs expressed a high degree of
the myosin heavy chain (MHC) with striated patterns and
improved myogenic-specific gene expression (Fig. 7(c)).299

Their research has opened a new avenue for combining a novel

Fig. 7 3D bioprinting of muscular tissue: (a) fabrication of heterogeneous, multi-cellular cardiac tissue composed of Human Umbilical Vein
Endothelial Cells (HUVECs) and induced pluripotent cell-derived cardiomyocyte (iPSC-CM) cells via hybrid bioprinting (a microfluidic printing head
(MPH) coupled to a co-axial nozzle extruder). Reproduced from ref. 316 with the permission of Springer Nature, © 2018; (b) development and appli-
cation of thoroughly personalized contracting cardiac patches employing patient’s cells. The structure and function of the patches were investigated
in vitro, and the evaluation of cardiac cell morphology after transplantation exhibited elongated cardiomyocytes with massive actinin striation.
Reproduced from ref. 318 with the permission of WILEY-VCH Verlag GmbH & Co., © 2019; and (c) development of scaffolds for co-culturing myo-
blasts and HUVECs via employing cell electrospinning and 3D printing. Striated patterns and enhanced myogenic gene markers showed a mature
stage of myogenic differentiation with vascularization. Reproduced from ref. 299 with the permission of Elsevier Ltd., © 2020.
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scaffold design with an innovative cell-printing method to
achieve myogenic tissue rehabilitation. In a recent study, Kim
et al.300 investigated the probability of using the bioprinted
human skeletal muscle scaffolds with neural cell integration to
enhance the structural and functional regeneration of exten-
sive muscle defect injuries. The neural input into the bio-
printed skeletal muscle construct demonstrated the develop-
ment of myofiber formation, long-term durability, and neuro-
muscular junction generation in vitro. Moreover, the bio-
printed neural cell-laden human skeletal muscle scaffolds pro-
moted rapid innervation and developed into organized muscle
tissue that reconstructed normal muscle weight and function
in a rat model of tibialis anterior (TA) muscle defect injury.
The results showed that the 3D bioprinted human neural-skel-
etal muscle scaffolds could be quickly combined with the host
neural network, resulting in accelerated muscle function
rehabilitation.300

Despite significant progress, the bioprinting of thick skel-
etal muscle tissue is still challenging concerning the need for
an integrated vascular network. Besides, further improvements
are necessary, such as the use of cells derived from patients,
iPS cells, and stem cells, which will facilitate the development
of patient-specific implants.301

Cardiac muscle

Most heart failures manifest cardiomyocyte loss, which is irre-
versible and leads to lethal heart diseases and high mortality
rates.302 Currently, heart transplantation is the best choice at
the end-stage of heart failure; though, substituting the
damaged heart with a healthy one faces various limitations,
such as insufficient organ availability, immune rejection, and
surgical complexities.303 Accordingly, strategies to promote
heart rehabilitation, notably through TE principles, have
gained growing attention.304 Although bioengineering of a
functional cardiac muscle composed of primary cardiomyo-
cytes (CMs) is a promising approach for myocardial regener-
ation, its applications remain restricted because the cardiac
tissue is an extremely organized structure with individual phys-
iological, biomechanical, and electrical properties.305

Bioengineering cardiac tissue via bioprinting technology as a
viable option for creating functional tissue constructs is
gaining increasing importance owing to its complex build-up
capability.306,307

3D bioprinting has been adopted to produce cardiac
patches that contain both cells and ECM proteins.280,291,308,309

Reviewing the literature, it is found that despite the origins of
the base materials, hydrogels remain desirable materials for
cardiac tissue regeneration.310 In some studies, a single ink
and material formulations have been produced and applied
using conventional bioprinting.311–313 For example, a porous
patch was printed to support cell attachment and CM differen-
tiation, and enhance left ventricular remodeling in mice by
incorporating cardiac-derived progenitor cells into a gelatin/
HA gel.313 Concerning the need for more complex tissues and
the limitations of the available approaches, researchers have
come up with the idea of hybrid structures generated using

multiple-dispenser bioprinting and composite bioinks.
Following this idea, Jang et al.314 reported the development of
pre-vascularized and functional disk-shape constructs utilizing
stem cell-laden dECM bioinks. In their research, multiple cell
types were consolidated into dECM bioinks, plus soluble
factors such as VEGF, to form composite 3D-printed patches.
The printed structure composed of spatial patterning of dual
stem cells (i.e., human cardiac progenitor cells (hCPCs) and
human turbinate tissue-derived MSCs (hTMSCs)) improves
cell-to-cell interactions and differentiation capability and func-
tionality for tissue regeneration. The developed patterned
patch promoted vascularization and tissue matrix formation
in vivo and exhibited enhanced cardiac functions, reduced
cardiac hypertrophy, and fibrosis, increased migration from
the patch to the infarct zone, as well as advancements in
cardiac functions. This method presented the spatial pattern-
ing of cells in a form that is in favor of rapid vascularization.
Hence, the use of bioprinted stem cell patches has been
shown to be a promising therapeutic approach for ischemic
heart diseases.314 In another study, fabrication of a contractile
cardiac tissue construct utilizing three dispensing modules was
reported by Wang et al.307 They printed primary CMs incorpor-
ated into a fibrin-based bioink (including gelatin and HA) along
with a sacrificial hydrogel and supporting polymeric frame
(PCL). The fabricated constructs had a spontaneous synchro-
nized contraction in culture, indicating in vitro cardiac tissue
construction and maturation. Progressive cardiac tissue develop-
ment was approved after one week of culture, and cardiac
tissues were developed with uniformly aligned, dense, and elec-
tromechanically coupled cardiac cells after three weeks.307

Recapitulating the complexity of the myocardium within
functional constructs with tailored biological and mechanical
attributes is one of the current scientific preferences in the
field of TE, which has stimulated researchers to design hybrid
bioprinting methods. As a novel hybrid strategy, Zhang
et al.315 fabricated endothelialized human myocardium
employing coaxial bioprinting combined with a microfluidic
perfusion bioreactor. The constructs were fabricated using a
composite bioink, including GelMA, alginate, and induced
iPSCs, and next seeded with CMs to induce myocardium devel-
opment. Although the bioprinted microfibrous structures in
this work were not perfusable, it was observed that the printed
endothelialized microfibrous scaffold was capable of spon-
taneous and synchronous contraction.315 Following the hybrid
bioprinting strategy, Maiullari et al.316 presented the fabrica-
tion of functional heart tissue with simultaneous bioprinting
of iPSC-derived cardiomyocytes and HUVEC cells via applying
a microfluidic printing head (MPH) coupled to a co-axial
nozzle extruder. It was the first research that exposed vascula-
ture development in transplanted tissue via printed endo-
thelial cells. The resultant construct was better adapted for
integration with the host’s vasculature due to its combination
of iPSC-CM with a high orientation index and HUVEC origi-
nated blood vessel-like shapes. Moreover, they showed the
capability of multi-cellular bioprinted constructs to mature in
vascularized functional tissues in vivo, which can be used in
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different translational applications316 (Fig. 7(a)).316 Izadifar and
colleagues317 utilized a UV-integrated pneumatic 3D-Bioplotter
system to construct human coronary artery endothelial cells
(HCAECs) encapsulated in methacrylated collagen (MeCol). The
CNT was incorporated into alginate and the MeCol bioink for
building a cardiac patch with electrical and mechanical attri-
butes. As a result, HCAECs in the MeCol gel presented signifi-
cant cellular proliferation, migration, and differentiation over
10 days of incubation in in vitro cell culture.317

Despite meaningful advancements, the production of thick
vascularized tissues that entirely match the case remains a
challenge in cardiac TE. Lately, Dvir and colleagues318 fabri-
cated 3D cellularized, vascularized, thick, and perfusable
cardiac patches for the first time, which have been demon-
strated to be a breakthrough in transplant science. They have
exhibited bioprinting of fully personalized contracting cardiac
patches utilizing patients’ cells, which decreases the risk of an
immune response. Accordingly, they combined a personalized
hydrogel, which was derived from the processing of the ECM
obtained through biopsy of fatty tissue with the patient’s cells
(iPSC-derived CMs). The engineered cells in the fabricated
cardiac patch were elongated and aligned, with massive stria-
tion, which showed their contractile capacity. Consequently,
they demonstrated free-form printing of volumetric and anato-
mically heterogeneous-cellularized human hearts with major
blood vessels (Fig. 7(b)).318 Although the printed patches could
thoroughly match the anatomical, cellular, biochemical, and
immunological characteristics of the patient, the printed
blood vessel network is still limited and requires further inves-
tigation. To address this challenge, advanced technologies to
accurately print small-diameter blood vessels within thick
structures should be developed.

Smooth muscle

As a vital regulator of organ function, smooth muscle is an
involuntary non-striated muscle in the walls of hollow organs
like the bladder, uterus, stomach, intestines, and the walls of
passageways, such as the arteries and veins of the circulatory
system.319 Aberrant smooth muscle contraction plays a signifi-
cant role in the pathology of a broad range of diseases. For
instance, although asthma, COPD, and Crohn’s illness are
inflammatory in nature, each of them is characterized by
changes to normal smooth muscle contraction.320,321 Despite
significant efforts, research applying conventional 2D in vitro
methods and animal models has failed to find a cure for the
mentioned disorders of aberrant contraction,322,323 which
resulted in the development of in vitro technologies (e.g., 3D
bioprinting). With the aim of enhancement in the relevance of
in vitro models for human illness, Dickman et al. investigated
the efficacy of a unique microfluidic 3D bioprinting technology
to generate viable and contractile smooth muscle tissue. The
primary human airway and SMCs were printed into rings of
muscle tissue in high density and viability. Based on the
results, in response to physiologically relevant contractile ago-
nists and clinically proven pharmacological triggers of relax-
ation, printed tissues regenerated the acute contractile func-

tion of smooth muscle. Utilizing an identified trigger of fibro-
sis (TGFβ) in airway muscle rings induced long-term altera-
tions in tissue function similar to that seen in chronic lung
infections. Furthermore, combining the dECM into intestinal
smooth muscle constructs promotes contractile function rele-
vant to a standard collagen-based hydrogel.324

The ability to fabricate perfusable, small-diameter vascula-
ture is a foundational step toward generating human tissues/
organs for clinical applications. Cell-laden perfusable vascular
conduits have been fabricated for employment in thick tissue
regeneration. Employing a coaxial printing system, Zhang et al.
developed branched vascular conduits using SA.325 It has been
shown that HUVSMCs encapsulated in SA maintain their func-
tions after printing. In another study, to replicate the cellular
composition of natural blood vessels, HUVECs and MSCs were
incorporated into a bioink comprising GelMA, SA and PEGTA
which further differentiated into vascular SMCs in the pres-
ence of transforming growth factor-β1.231 Artificial valve con-
duits made from SMCs and aortic valve leaflet interstitial cells
(VIC) have been fabricated and implemented to displace tra-
ditional prosthetic substitutes for the cure of heart valve
illness.219,326 The alpha-smooth muscle actin and vimentin
secreted by the printed cells showed the potential of EBB to
produce valve-like tissue constructs.326 Similarly, constructs
with high viability and the required function of hepatocytes
have also been printed, confirming the capability of EBB tech-
niques for rehabilitation of human liver function.327

Despite advances, it is very challenging to create vasculature
integrated with smooth muscle and endothelium that mimic
the complexity and functionality of natural vessels. Recently,
an innovative method for coaxial extrusion printing of self-
standing, small-diameter vasculature with smooth muscle and
endothelium was performed by combining a tailored mussel-
inspired bioink and a novel “fugitive-migration” approach, and
its usefulness and satisfaction over other techniques were
demonstrated. The outcomes exhibited that the bioprinted vas-
cular construct possessed numerously desirable, biomimetic
properties such as proper biomechanics, higher tissue affinity,
vascularized tissue formation capacity, practical perfusability
and permeability, and in vivo autonomous connection (∼2
weeks). Moreover, biofunctionalization and dynamic stimuli
significantly enhanced vascular remodeling of both smooth
muscle and endothelium (∼6 weeks). The desirable biocompat-
ibility in vivo assured the safety of implantation, and investi-
gations of vasculature tissue development in immunodeficient
mice confirmed the design’s effectiveness. The advancements
in creating biomimetic, functional vasculature showed signifi-
cant potential for producing a complex vascularized tissue/
organ concerning clinical transplantation.328

Concluding remarks and future
perspective

The 3D-bioprinting technology is accelerating innovation in a
variety of disciplines and is making inroads into the fields of
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medicine and biology, particularly in the design and fabrica-
tion of 3D cell culture structures. It enables the rapid construc-
tion of scaffolds while sustaining a high level of control over
the matrix architecture. Among various 3D-bioprinting
approaches, EBB is the most convenient, affordable, and
common one, which has been considered a revolutionary tech-
nique in tissue biofabrication. The rapidly expanding research
area in this field is hydrogel-based EBB that stands out for its
unique advantages, and hence has been extensively explored
for the generation of different tissue constructs.

Looking at the literature, the principal challenges of devel-
oping hydrogel-based EBB can be divided into four main cat-
egories: (1) bioink selection and process parameter optimiz-
ation in the printing of various tissues, (2) enhancement in
mechanical strength and bio-functionality of the printed con-
structs, (3) vascularization of the target tissue, and (4) com-
mercialization and mass-market challenges. To address the
first two issues, there is a wealth of current literature present-
ing laboratory studies to create functional 3D constructs.
Accordingly, the capability of EBB to achieve personalization
of target tissues through precise control over bioinks, printing
processes, and architectural accuracy has been extensively
reported. Although there is still an important requirement for
the development of printable biomaterials and 3D printing
mechanisms to replicate the functions of the tissues, it seems
that focusing on the advantages and disadvantages of the
reported fabrication methodology could open new avenues for
future research. Thus, the present review manifests the recent
progress in emerging technologies developed for the improve-
ment of TE with a particular focus on most of the published
3D-printed tissues (i.e., skin, bone, cartilage, vascular, neural,
and muscular tissue including skeletal, cardiac, and smooth
tissue) exploring the TE perspective and fabrication
methodology.

The potential of hydrogel-based EBB has been extended by
researchers through developing coaxial nozzles and multi-dis-
penser apparatus. Coaxial nozzles have been extensively
implemented in engineering microchannels and vascular net-
works. Multi-dispenser printing systems frequently facilitate
the fabrication of tissues with high architectural and func-
tional complexities (e.g., cartilages, bone, and muscle tissues).
Furthermore, hybrid bioprinting approaches are advantageous
for incorporating multiple biomaterials and fabricating com-
plicated constructs with structural and functional heterogen-
eity. Through these improvements and novel techniques, it is
possible to print artificial transplantable tissues in a short
time with a fine micro- and macrostructure as well as practical
functionalities.

The most commonly emerging methods reviewed in this
article are as follows:

- Hybrid 3D bioprinting i.e., combination of the EBB with:
○ Electrospinning: Electrospinning and EBB have been

known to have promising potential in the fabrication of com-
plicated constructs such as bone and cartilage tissues.
Combining these two techniques has successfully helped over-
come some of the inherent limitations of each method (e.g.,

the tight intertwining of electrospun fibers that limits cell
migration, and the insufficient resolution of EBB).

○ Microfluidic technologies: The microfluidic technologies
and organ-on-chip platforms offer the capability of mimicking
the physiological, mechanical, and chemical attributes of
native tissues. Although the convergence of microfluidic
technologies with EBB has led to a significant leap in the vas-
cularization of engineered tissues, several issues have been
reported to be solved. For instance, EBB achieves prevalence
due to its low cost and mild printing conditions; however, it is
not quite applicable for a microfluidic platform owing to its
limited resolution and surface roughness. Although the micro-
fluidic bioprinting approach is emerging to fabricate complex
tissue constructs, further developments in the bioprinting pro-
cesses and bioinks are required for its wide application in the
generation of functional tissues.

- In situ bioprinting: The recent in situ bioprinting studies
have pleasantly grasped the very conceptual idea of tissue bio-
fabrication directly in the living body. Owing to its intrinsic
advantages, increased efforts are being made to improve it
through the development of more advanced bioinks, higher
resolution of bioprinting methods, and automation of bio-
printing processes. Besides, other capacities such as real-time
monitoring, sensors for investigating critical parameters, min-
iaturization of the device, higher freedom, and printing on a
dynamic surface, can be integrated with in situ bioprinting.
Thus far, attempts have been made to fabricate tissues on the
outer organs (i.e., skin, cartilage, and bone), which can be
safely arrested and immobilized while printing.

Besides the abovementioned methods which have been
extensively explored in vitro and in vivo, some innovative
approaches have been reported recently, to overcome the
reviewed challenges and accomplish more accurate and com-
plicated architectures. For instance, the capability of printing
multiple materials through a single nozzle helps overcome
some restrictions of multi-nozzle 3D bioprinters (e.g., enhance-
ment of the printing time while changing between materials,
requiring specific calibration for all the printheads before
every print).51 Accordingly, different techniques have been
used for manufacturing continuous single-nozzle multi-
material (SNMM) micro-extrusion bioprinters.329 Moreover, a
novel multimaterial multinozzle 3D printing method (MM3D)
has been introduced for generating voxelated soft materials, in
which through a uniform printing process, complex architec-
tures with controlled composition, function, and structure in a
voxel-by-voxel manner could be fabricated. MM3D is capable
of presenting an efficient approach to fabricate a broad range
of high-performance structural, functional, and biological
materials, which could exclude periodicity restrictions of the
existing printhead design, progress feature resolution and
minimise printing time.330

As EBB is hampered by the insufficiency of printing low-vis-
cosity materials, the dual-step crosslinking method is
implemented for cytocompatible bioprinting of a wide range
of Gel-AGE bioink formulations, enabling the fabrication of
soft and permissive constructs, e.g. vascular and neural tissue.
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This approach could open a promising gateway to produce
complex constructs while maintaining a cell-permissive
environment.331 Continuous chaotic printing is another
approach that allows careful control of the spatial microstruc-
tures (i.e. the number of layers and the average spacing
between them) within a single 3D printed fiber. The principal
part of this technological platform is the use of an on-line
static mixer in the printhead for presenting a partial mixing of
various materials as they are coextruded through the nozzle.332

As the bioprinting matured, substantive roadblocks to
obtaining the architecture and resolution of native tissues
became obvious. Several groups have now demonstrated that
innovations in the materials used for printing can promote
transformative advances in both tissue architecture and resolu-
tion. Recently, the freeform reversible embedding of suspended
hydrogel (FRESH) bioprinting technique223 was improved, and
individual filaments of collagen as thin as 20 mm in diameter
were printed.333 Although it is a notable improvement towards
volumetric patterning of natural biomaterials at cellular resolu-
tion, and such astonishing improvement in resolution would
lead the EBB field to a new era, the field still requires to address
how to best seamlessly combine cells into FRESH-printed con-
structs.334 It should be considered that the FRESH method is
the only technique to obtain volumetric patterning using EBB.
The principal contrast between the FRESH method and other
EBB approaches is that FRESH is achieved within a dissolvable
support bath.334 The recent progress in the application of the
jamming transition of granular hydrogels for supporting baths
and bioinks expresses a potential paradigm shift in the EBB.
They have appeared as a powerful platform for 3D bioprinting
because of their dynamic structures, unique shear-thinning,
and self-healing characteristics.335,336

In addition to the discussed current progress associated
with EBB, 4D bioprinting, in which the concept of time is inte-
grated with 3D bioprinting, has currently emerged as the next-
generation solution of TE as it presents the possibility of con-
structing complex and functional structures.337 Integration of
the fourth dimension “time” in 4D bioprinting allows for con-
tinued control over the evolution of 3D printed biomaterials
and bioinks, and provides programming and regulation of the
formation of biomimetic tissues from the printed constructs
to achieve more native-like results.338 4D bioprinting can be
used to fabricate dynamic 3D-patterned biological architec-
tures that will change their shapes under various stimuli by
employing stimuli-responsive materials. The functional trans-
formation and maturation of printed cell-laden structures over
time present an unprecedented potential for TE. The shape
memory characteristics of the printed constructs could
address the need for personalized tissue defect repairs.339

Applying this technique, researchers have fabricated biocon-
structs capable of transforming into very complex structures
which are difficult to directly achieve by 3D bioprinting or
other systems. Despite the concise history of 4D bioprinting,
the recent fast progress with a focus on developing novel 4D
printable materials, exploring novel methods to precisely
control the process, and seeking biomedical applications is

testified in this field.340 In summary, 4D bioprinting has
opened new windows for biofabrication, and it has shown
magnificent potential to revolutionize tissue engineering, drug
delivery, and other fields.337 However, it is in its infancy, and
there is still a long way to achieve clinical applications. With
the progress of materials science, printing technology, soft-
ware, and numerical modelling, 4D bioprinting would take a
huge step forward in achieving real applications.340,341

Finally, it should be highlighted that despite extensive
efforts that have been made in recent years to develop hydro-
gel-based EBB and proposed notions by interdisciplinary
researchers to overcome the challenges, it is still in the infancy
stage. Besides, there is no clear picture of which method is
best to overcome hurdles and accomplish more accurate and
complicated architectures considering that all these methods
in the field are still at early stages and many more studies
should be performed in this area towards engineering func-
tional human tissues and organs.

The present review outlines that fast-developing fabrication
technologies in the area of EBB could open up new avenues
toward more innovative treatments in the future. Furthermore,
challenges such as the economics of scale, the cost-effective-
ness of the final product, regulatory standards, and ethical
considerations are still the foremost issues for commercializa-
tion of bioprinted tissues for personalized medicine. It is
expected that multidisciplinary approaches provide further
convenient ways to overcome the mentioned hurdles.
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