Controlling the ligands of CdZnTe quantum dots to design a super simple ratiometric fluorescence nanosensor for silver ion detection†
Abstract
A super simple ratiometric fluorescence nanosensor has been fabricated by controlling the ligands of CdZnTe quantum dots (QDs), allowing the sensitive and visual detection of silver ions (Ag+). The green-emitting L-cysteine-protected CdZnTe QDs (Lcys-CdZnTe QDs) had a specific response to Ag+ and were used as the reporting probe, while the red-emitting N-acetyl-L-cysteine-protected CdZnTe QDs (NAC-CdZnTe QDs) showed no obvious response to all tested metal ions and were selected as the reference probe. Simply mixing them without any encapsulated synthesis ultimately produced a time-saving, low-cost detection method, allowing the sensitive and visual detection of Ag+ in samples. The proposed nanosensor exhibited a linear range of 0.5–4.0 μM along with a detection limit of 0.17 μM, and has been successfully applied in real tap water and lake water samples. This nanosensor also showed obvious color changes in the detection process and has potential in visual semi-quantitative detection. Our approach may provide a general and feasible strategy for designing ratiometric fluorescence nanosensors, which will attract a wide range of interest in sensing-related fields.