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Insight into metastatic oral cancer tissue from
novel analyses using FTIR spectroscopy and
aperture IR-SNOM
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Philip J. Gunning, b Paul Harrison,a Paul Unsworth,a Peter Gardner, c
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and Peter Weightman *a

A novel machine learning algorithm is shown to accurately discriminate between oral squamous cell car-

cinoma (OSCC) nodal metastases and surrounding lymphoid tissue on the basis of a single metric, the

ratio of Fourier transform infrared (FTIR) absorption intensities at 1252 cm−1 and 1285 cm−1. The metric

yields discriminating sensitivities, specificities and precision of 98.8 ± 0.1%, 99.89 ± 0.01% and 99.78 ±

0.02% respectively, and an area under receiver operator characteristic (AUC) of 0.9935 ± 0.0006. The

delineation of the OSCC and lymphoid tissue revealed by the image formed from the metric is in better

agreement with an immunohistochemistry (IHC) stained image than are either of the FTIR images

obtained at the individual wavenumbers. Scanning near-field optical microscopy (SNOM) images of the

tissue obtained at a number of key wavenumbers, with high spatial resolution, show variations in the

chemical structure of the tissue with a feature size down to ∼4 µm. The image formed from the ratio of

the SNOM images obtained at 1252 cm−1 and 1285 cm−1 shows more contrast than the SNOM images

obtained at these or a number of other individual wavenumbers. The discrimination between the two

tissue types is dominated by the contribution from the 1252 cm−1 signal, which is representative of

nucleic acids, and this shows the OSCC tissue to be accompanied by two wide arcs of tissue which are

particularly low in nucleic acids. Haematoxylin and eosin (H&E) staining shows the tumour core in this

specimen to be ∼40 µm wide and the SNOM topography shows that the core centre is raised by ∼1 µm

compared to the surrounding tissue. Line profiles of the SNOM signal intensity taken through the highly

keratinised core show that the increase in height correlates with an increase in the protein signal. SNOM

line profiles show that the nucleic acids signal decreases at the centre of the tumour core between two

peaks of higher intensity. All these nucleic acid features are ∼25 µm wide, roughly the width of two

cancer cells.

Introduction

There is considerable interest in the detection of cancer by
applying machine learning algorithms to the analysis of the
extensive datasets obtained by the application of infrared (IR)

imaging spectroscopies to fixed human tissue.1–9 Baker
et al.10,11 demonstrated considerable improvement in sensitivity
and specificity in the Gleason grading of prostate cancer when
applying principal component discriminant function analysis
(PC-DFA) to a Fourier transform infrared (FTIR) imaging
dataset. Similarly, the application of convolutional neural net-
works to a combination of results obtained from FTIR spectral
imaging and associated spatial information obtained from
tissue microarrays was able to identify six major cellular and
acellular constituents associated with breast cancer.3

There have been several reviews of advances in the instru-
mentation and application of the FTIR technique to
cancer12–15 and the application of techniques for obtaining
chemical information from FTIR.3,6–9 We recently applied a
novel machine learning multivariate metrics analysis (MA)

aDepartment of Physics, University of Liverpool, L69 7ZE, UK.

E-mail: peterw@liverpool.ac.uk
bDepartment of Molecular and Clinical Cancer Medicine, Institute of Systems,

Molecular and Integrative Biology, University of Liverpool, L3 9TA, UK
cManchester Institute of Biotechnology, 131 Princess Street, University of Manchester,

Manchester, M1 7DN, UK
dRegional Maxillofacial Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
eDepartment of Pathology, Liverpool Clinical Laboratories, University of Liverpool,

Liverpool, L69 3GA, UK

This journal is © The Royal Society of Chemistry 2021 Analyst, 2021, 146, 4895–4904 | 4895

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ly
 2

02
1.

 D
ow

nl
oa

de
d 

on
 6

/3
0/

20
24

 3
:3

9:
42

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

www.rsc.li/analyst
http://orcid.org/0000-0001-6878-0697
http://orcid.org/0000-0003-1942-0171
http://orcid.org/0000-0003-4034-3764
http://orcid.org/0000-0003-2960-3334
http://orcid.org/0000-0001-8752-5595
http://orcid.org/0000-0002-8770-7783
http://orcid.org/0000-0002-0907-3930
http://crossmark.crossref.org/dialog/?doi=10.1039/d1an00922b&domain=pdf&date_stamp=2021-07-20
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D1AN00922B
https://pubs.rsc.org/en/journals/journal/AN
https://pubs.rsc.org/en/journals/journal/AN?issueid=AN146015


technique to the analysis of FTIR images obtained from four
cell lines associated with oesophageal cancer16 and compared
its performance with the well-established random forest (RF)
method. The MA was found to achieve greater accuracy in dis-
criminating between the cell types in a shorter time than the
RF method. In particular the MA was able to discriminate with
accuracies in the range of 81% to 97% between OE19 and
OE21 cell lines, associated respectively with adenocarcinoma
and squamous carcinoma, and more importantly between
cancer associated myofibroblasts (CAM) and adjacent tissue
myofibroblasts (ATM) obtained from the same patient. In
addition to discriminating between these cell lines, the MA
yielded a number of key spectral biomarkers that had not been
identified in previous FTIR studies of oesophageal cancer.

FTIR and Raman imaging has previously been applied to
the discrimination of oral cancer from histologically normal or
benign tissue in a number of studies.17 For example, Pallua
et al.18 used principal component analysis (PCA) and cluster
analysis to produce pseudo-colour images of oral squamous
cell carcinoma (OSCC) tissue microarrays and showed corre-
spondence between FTIR and routine histology, suggesting
that tissue types are separable by their IR spectra when appro-
priate methods are used to analyse the dataset. Lloyd et al.2

developed a multivariate analysis technique that combined
PCA followed by linear discriminant analysis (LDA) to results
obtained by Raman spectroscopy. This was able to discrimi-
nate between lymph nodes with benign pathology from those
harbouring lymphoma or metastases of head and neck cancer
with sensitivities and specificities of 81% and 89% respect-
ively. Another study19 used a framework of feature selection
and classification algorithms to identify spectral features
which distinguished normal mucosa, pre-cancerous tissue and
cancer of the oral cavity. Particular wavenumbers, previously
correlated with chemical moieties such as glycogen and pro-
teins, were discriminatory which suggests that relevant infor-
mation comparable to that previously obtained via other meth-
odologies is achievable from such data. A comprehensive
review of Raman and FTIR studies of oral cancers has recently
been published by Byrne et al.17

The present investigation examines the value of the MA
technique in discriminating between lymph nodal metastasis
of oral cancer and indigenous lymphoid tissue. High spatial
resolution measurements using an aperture scanning near-
field optical microscope (SNOM) provide additional insight
into the chemical biology of the metastatic tissue.

Experimental
Preparation of samples for analysis

Archival formalin-fixed, paraffin-embedded (FFPE) tissue from
cervical lymph node metastases were obtained from a single
patient with OSCC following informed consent. All experi-
ments were performed in accordance with University of
Liverpool guidelines; with the sponsorship of their Joint
Research Office and with ethical approval from the Northwest

Liverpool Central Research Ethics Committee (REC number
EC 47.01).

Regions of interest (ROIs) (n = 2) containing both metastatic
OSCC and surrounding lymphoid tissue were identified by
light microscopy on sections routinely prepared and stained
with haematoxylin and eosin (H&E). Cores of 1 mm diameter
corresponding to the ROIs were then obtained from the FFPE
blocks using a Beecher MTA-1 tissue microarrayer for con-
structing a tissue microarray block. Serial, 5 µm thick, sections
were cut from the tissue microarray block and floated onto
charged glass slides for histopathology and immunohisto-
chemistry (IHC) and onto calcium fluoride (CaF2) disks for
FTIR imaging. While sections for IHC were eventually sub-
jected to deparaffinisation, sections for FTIR remained in
paraffin wax to minimise further changes in hydration and
structure of the samples. Six serial sections were utilised and
comprised two sections for FTIR imaging sandwiched between
two sections stained with H&E and two with IHC for pan-cyto-
keratins using the AE1AE3 antibody (Agilent DAKO, Stockport,
UK) and a Bond RX™ autostainer (Leica Biosystems, Milton
Keynes, UK). The H&E and IHC stained sections were scanned
using an Aperio CS2scanner (Leica Biosystems) to facilitate co-
registration with IR images.

FTIR experiments

Mid-IR spectroscopic images were acquired from each ROI
using an Agilent Cary 620 FTIR microscope coupled to an
Agilent Cary 670 FTIR spectrometer (Agilent, Stockport, UK) as
described previously.16,20 Poor quality spectra, defined as
having an amide I absorbance (peak centre 1650 cm−1) less
than 0.1 or greater than 2, were removed from the dataset.
This range was chosen so that outlier spectra arising from sub-
optimal sample thickness would be discarded whilst retaining
the vast majority of data. The spectra were then truncated to
the fingerprint region (900 cm−1–1800 cm−1) and the region
dominated by paraffin contributions (1350 cm−1–1500 cm−1)
was omitted from the analysis. Each spectrum in the truncated
dataset was then subject to a rubber-band baseline correc-
tion,21 followed by vector normalisation. Corrections for Mie
scattering are unnecessary for FFPE tissue due to the refractive
index matching between the tissue and paraffin, thus signifi-
cantly reducing scattering artefacts.13

The histopathological and FTIR images were cross-refer-
enced and spectra from the ROIs were identified and labelled
as OSCC or lymphoid tissue as appropriate. Labelled FTIR data
were used to train a discriminatory model using the MA tech-
nique.16 MA is a supervised learning technique which gener-
ates an ensemble of bivariate classifiers based on the ratio of
absorbances for all pairings of wavenumber features in the
data. Through an iterative approach, it seeks to determine the
ratios which provide the best classification accuracy, incorpor-
ating the top ranking metrics into a dynamic hard-voting
ensemble classifier. The main advantage of this approach is
that it is a more direct measure of feature importance – a
cumulative importance histogram is obtained, rather than a
multivariate weight vector that results from classifiers such as
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logistic regression and linear discriminant analysis. An equal
number of spectra were randomly sampled from each image so
as to mitigate the risk of overfitting to image-specific features.
The MA model was trained using a three-fold cross validation
regime, whereby the data is divided into three partitions,
selecting two for training and holding out the third for testing.
This process is repeated three times so that all data appears in
both the training and testing sets.

SNOM experiments

Experiments were also performed using an aperture SNOM
described previously.20,22–25 The infrared source was a
quantum cascade laser (QCL) instrument (Daylight Solutions,
San Diego, USA), equipped with three modules enabling an
effective spectral range of 1965 cm−1–1145 cm−1 and pulsing
at a rate of 80 kHz with pulse widths of 200–500 ns. The x–y
piezo-stage was configured to scan a region of 300 × 300 µm
with a step of 2 µm. The SNOM imaging tip was a specially pre-
pared IR-transmitting chalcogenide fibre (CorActive, Quebec,
Canada) of core diameter 100 μm, sharpened by etching, to
create a small aperture through which the SNOM images were
collected26 concurrently with shear-force topography. The
images were corrected for non-linearity of the piezo stage, and
other common processing techniques such as streak removal
and line-levelling were applied. The images were co-registered
using cross correlations and then a Gaussian smoothing of 2
pixels (4 µm), full-width half-maximum (FWHM) was applied.

Results
Discrimination of OSCC metastases from lymph node tissue

The MA algorithm produces a ranked list of metrics, an
ensemble of which produces the optimum discrimination.16

The trained MA model was able to discriminate between meta-
static OSCC and the surrounding lymphoid tissue with a high
sensitivity and specificity by utilising only the highest-ranking
metric, specifically the ratio of intensities at 1252 cm−1 and
1285 cm−1 (Table 1). The success of this metric is shown in
Fig. 1(a) in which the histograms of the ratio of the intensities
of the discriminating wavenumbers obtained at each pixel in
the areas of the FTIR images identified with each tissue type
in the images used to train the algorithm are plotted. This
shows that the test spectra conform very well with the decision
boundaries formed by this metric, explaining the high AUC.

These two wavenumbers and those contained in the next
four metrics in rank order, 1254/1285, 1250/1289, 1252/1287
and 1252/1289, draw attention to a very narrow region of the

Table 1 Measures of discrimination between metastatic OSCC and
lymphoid nodal tissue for the highest-ranking metric. The mean and
standard deviation are taken from across three cross validation partitions

Highest ranked metric 1252 cm−1/1285 cm−1

Sensitivity 98.8 ± 0.1%
Specificity 99.89 ± 0.01%
Precision 99.78 ± 0.02%
Area under curve (AUC)a 0.9935 ± 0.0006

a Area under the receiver operating characteristic (ROC) curve.

Fig. 1 (a) The normal distributions (blue lines) fitted to the training data
(not shown) for OSCC and lymphoid tissue. Histograms of OSCC (black)
and lymphoid tissue (grey) testing spectra are also shown. Histograms
for (b) 1252 cm−1 and (c) 1285 cm−1 show more overlap and hence
explain the poorer values for sensitivity and specificity quoted in the
text.
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FTIR spectrum, wherein the average spectra of different types
of tissue show differences (Fig. 2).

This highest-ranking metric discriminates between OSCC
and lymphoid tissue better than the individual wavenumbers
(Fig. 3). If the absorbance at 1252 cm−1 and 1285 cm−1 were
used individually as discriminatory features, the performance
of the model would drop significantly. The sensitivity and
specificity obtained by using 1252 cm−1 alone would be 89.3%
and 73.3% respectively; the corresponding results acquired
using 1285 cm−1 alone would be 90.4% and 54.4% respect-
ively. This is illustrated by the normal distributions shown in
Fig. 1(b) and (c). Thus, although a correspondence between
tumour cells stained by IHC [Fig. 3(a)] and the low absorbance
at 1252 cm−1 [Fig. 3(c)] is observed, a greater correlation is
seen between the IHC and the ratio of 1252 cm−1/1285 cm−1

[Fig. 3(d)]. However, topographically different areas of the
metastasis (e.g. periphery versus the more heavily keratinised
centre as appreciated on H&E sections) are not discriminated
by the metric (Fig. 3).

SNOM analysis of OSCC nodal metastases

To further investigate the biological changes that underly the
discriminatory metric, a second core from a different region in
the same lymph node metastasis specimen shown in Fig. 3
was dewaxed using the protocol described recently20 and topo-
graphy and SNOM images were obtained of a small region of
this tissue that contained the OSCC–lymphoid tissue interface.
The results obtained in these experiments are shown in Fig. 4.
Fig. 4(a) and (b) show the H&E and IHC stained images of this
region of the core, respectively, and Fig. 4(c) shows the topo-
graphy obtained during the collection of SNOM images. SNOM
images were collected at a number of wavenumbers that have
been shown to be important in discriminating oesophageal
cancer cells24,25 and in the development of a dewaxing protocol
for SNOM experiments:20 1751 cm−1, 1650 cm−1, 1369 cm−1

(shown in Fig. 4(d), (e) and (f ), respectively). The SNOM

images obtained at the discriminating wavenumbers
1285 cm−1 and 1252 cm−1, defined above, are shown in
Fig. 4(g) and (h), respectively, and the ratio of the intensity of
these two images is shown in Fig. 4(i). The images indicate
presence of tumour mass in the bottom right corner of the
image, while the heterogeneity of the images indicates that
additional, higher resolution, differences might also be identi-
fied in the tissue by this method.

In order to bring out in more detail the information cap-
tured in the images obtained with high spatial resolution
using the SNOM (Fig. 4), the smaller region of the tumour in
the bottom right-hand corner of the H&E image [Fig. 4(a)] was
used to create line profiles of the topography and the SNOM
intensities at each wavenumber. Each profile was obtained
along a 1-pixel-wide line close to the centre of the OSCC nodal
metastasis (Fig. 5). The noise levels in the SNOM images (and
hence the profiles) were quantified by comparing raw images
with de-noised images, and the noise-to-signal ratios were
found to be <5% for all wavenumbers. Line profiles taken
within 8 microns of those shown in Fig. 5 show only very small
differences from those shown in the figure. The topography
[Fig. 5(a)] of the centre of the tumour can be seen to be higher
than the surrounding tissue. This increase in height correlates
with an increase in the protein signal [Fig. 5(c)] in this region
of the image. The line profiles obtained at other wavenumbers
show more marked variations in intensity across smaller dis-
tances, indicating that there are many subtle changes in the
chemistry of the metastasis.

The SNOM images were taken in IR transmission mode and
so the SNOM intensity profiles in Fig. 5 have been inverted to
present a more intuitive interpretation – peaks (valleys) in the
profiles correspond to more (less) absorption. The profiles
are presented on vertical scales that have been corrected for
image acquisition parameters such as detector sensitivity.
Comparison between profiles at different wavenumbers should
not be taken as providing values for relative molecular concen-
trations, as the SNOM fibre transmission varies with wavenum-
ber and each molecular vibration has a different transition
dipole strength.

Discussion

The MA algorithm applied to FTIR data is able to discriminate
between OSCC nodal metastases and surrounding lymphoid
tissue on the basis of a single metric, the ratio of intensities at
1252 cm−1 and 1285 cm−1 (Table 1). Although there is a corre-
spondence between the FTIR image obtained at 1252 cm−1

[Fig. 3(c)] and IHC [Fig. 3(a)], the image formed from the ratio
of the intensities of the images obtained at 1252 cm−1 and
1285 cm−1 [Fig. 3(d)] seems in better agreement with the IHC
than are either of the images obtained at the individual wave-
numbers. This is to be expected given the high specificity, sen-
sitivity and precision attributed to this metric during the MA
of the FTIR spectra [Table 1, Fig. 1(a)]. It is apparent that, with
sufficient spatial resolution and control of the signal-to-noise

Fig. 2 Average FTIR profiles for (a) lymphoid tissue (grey) spectra and
(b) OSCC (black). The shaded grey rectangles show the regions of
1250–1254 cm−1 and 1285–1289 cm−1.
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ratio, a direct inspection of the region of the spectrum
between 1250 cm−1 and 1289 cm−1 might be used to identify
these two tissue types in similar specimens. This observation
is interesting and of academic merit, but requires substantia-
tion in a larger sample cohort than that used here. At present,
it is unlikely that the current methodology would replace the
standard histopathological assessment of nodal metastasis.
Nonetheless, further testing of the methodology in conjunc-
tion with standard approaches in the format of a clinical trial
would be of use. In addition, it would be of interest to estab-
lish whether the methodology assists in resolving the, admit-
tedly rare, histopathological diagnostic dilemmas and chal-
lenges of detecting, for instance, isolated tumour cells or

micrometastases of unusual phenotypes that are difficult to
overcome via routine histology and immunohistochemistry.
The present research group intends to pursue such lines of
investigation in the near future. It should also be remembered
that the ability to discriminate cancer from surrounding tissue
on the basis of this, or any other single metric, is not necess-
arily true of all cancer types and it is often not possible to
identify tissue types by direct inspection of spectra, as can be
seen from Fig. 1 of Ingham et al.16

FTIR absorbance at 1252 cm−1 would be expected to be
related to nucleic acid content. However, absorbance at this
wavenumber was observed to be lower in OSCC metastasis
compared with the surrounding lymphoid tissue [Fig. 3(c)] and

Fig. 3 Images of a tissue core containing OSCC and lymphoid tissue. (a) IHC image stained for pan-cytokeratins (dark brown), (b) FTIR image at
1285 cm−1, (c) FTIR image at 1252 cm−1 and (d) FTIR ratio image 1252 cm−1/1285 cm−1. Black arrows indicate the periphery of the tumour; white
arrows identify highly keratinised areas of the tumour. Each FTIR image is plotted with a colour table covering the 5th to 95th percentiles of the
image intensity range. Image (a) was obtained from a section adjacent to that used to obtain images (b)–(d).
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this is reflected in the ratio of 1252 cm−1 and 1285 cm−1. This
is surprising since it is known that OSSC, like many solid
tumours, often shows changes in DNA ploidy27 and, indeed,
that such changes may be an early event.28 This might be
explained by the fact that the nuclei in lymphoid tissue are
more closely packed than in the tumour, with its typically
larger cells, and hence the IR absorbance at 1252 cm−1 would
be higher for lymphoid tissue. The inability of FTIR to dis-
criminate between the periphery and highly keratinised centre
of the metastasis [Fig. 3(a), (c) and (d)] was overcome in higher
resolution studies utilising SNOM.

The high spatial resolution of the SNOM images have the
potential to provide some chemical information, although over
a smaller region of the specimen and at a limited number of
wavenumbers. This makes the choice of wavenumbers particu-
larly important since biological macromolecules give complex
IR absorbance spectra. Nevertheless, with a careful choice
of wavenumbers, the SNOM images and line profile data,
obtained with higher intrinsic spatial resolution than FTIR,
can be used to infer on basic chemistry of individual tissues.
The wavenumbers 1751 cm−1, 1650 cm−1 and 1369 cm−1 are
commonly attributed to lipids, the amide I peak of proteins

Fig. 4 (a) H&E stained image, (b) IHC image stained for pan-cytokeratins (dark brown), (c) topography, IR SNOM images at (d) 1751 cm−1, (e)
1650 cm−1, (f ) 1369 cm−1, (g) 1285 cm−1, (h) 1252 cm−1 and (i) ratio of 1252 cm−1/1285 cm−1 [i.e. (h)/(g)]. All images are 300 µm × 300 µm. Each
SNOM IR image is plotted with a colour table covering the 5th to 95th percentiles of the image intensity range. Image (a) was obtained from a section
adjacent to that used to obtain image (b), which was in turn adjacent to that used to obtain images (c) to (i).
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and the C–N stretch vibrations of the cytosine and guanine
components of nucleic acids respectively29 and have been
employed in previous SNOM studies,20,24,25 whereas the
1285 cm−1 signal is characteristic of collagen.29 The image
obtained at 1252 cm−1 can be attributed to the (PO2

−) nucleic
acids and/or RNA signal, since this wavenumber is within a
broad range of absorption from these molecules.30 As

expected, the SNOM images of the small region of the tissue
microarray core shown in Fig. 4 show detail on a finer length
scale than is obtained in the diffraction-limited FTIR images
of Fig. 3. These images show variations in the chemical struc-
ture of the tissue with a feature size down to ∼4 µm. All the
images indicate differences in spectral intensities in the
region of the OSCC nodal metastatic core and this region of
the image is also clearly delineated in the topographic image
[Fig. 4(c)]. The image formed from the ratio of the intensities
of the SNOM images obtained at 1252 cm−1 and 1285 cm−1

[Fig. 4(i)] shows more contrast between different areas of the
tissue than the images obtained at any of the individual wave-
numbers. In particular it shows that the centre of the tumour
in the bottom right of Fig. 4(a) is bounded by two broad arcs
of tissue in which the ratio of the intensity of the discriminat-
ing wavenumbers is particularly low. Thus, the SNOM images
are able to provide more detail than the FTIR images and high-
light differences between the centre and periphery of the
metastasis.

The line profiles obtained in the small region of the
tumour core shown in Fig. 5 provide more detail of the chemi-
cal differences therein. As regards topography [Fig. 5(a)] the
centre of the tumour was higher than the periphery. Although
it is not possible to quantify this difference precisely due to
the difficulty in calibrating the vertical scale of the topographic
image, it was found to be ∼1 µm. The increase in height corre-
lates with an increase in the protein signal [Fig. 5(c)] in this
region of the image. The centre of the metastasis appeared
highly keratinised and this is mirrored in the 1650 cm−1

amide I line profile which can be attributed to the α-helical
structure of cytokeratins.31,32 Furthermore, changes in spatial
arrangement and subpopulations of cytokeratins and the
molecules related to keratinisation (involucrin, etc.) are
expected between the often heavily keratinised centre of
tumour cells aggregates and the less keratinised periphery, the
latter also corresponding to the advancing front of the
primary, which could be reflected in the line profile at
1650 cm−1. In contrast to the smooth increase and decrease of
both the height and the protein intensity in this region of the
image, the line profiles obtained at other wavenumbers show
more marked variations in intensity over smaller distances,
indicating that there are subtle changes in the chemistry of the
tissue. The attribution of the 1252 cm−1 signal to the (PO2

−)
vibration of nucleic acids is supported by the very close corre-
spondence between the line profiles obtained at 1252 cm−1

[Fig. 5(f )] and 1369 cm−1 [Fig. 5(d)], since the latter is attribu-
ted to the C–N stretch vibrations of the cytosine and guanine
components of nucleic acids. A similar correspondence
between the line profiles of these two wavenumbers was found
in all regions of the images examined. As previously men-
tioned, the line profile obtained at 1285 cm−1 [Fig. 5(e)] is
attributable to collagen. However, given the relative paucity of
collagen in lymph nodes, the discriminating metric of Table 1
possibly arises from variations in the levels of nucleic acids
and collagen in the tissue, with the signal from the nucleic
acids dominating the discrimination. This would be consistent

Fig. 5 H&E stained image (top) and line profiles (bottom) taken through
the core at the white line showing (a) topography, (b) 1751 cm−1, (c)
1650 cm−1, (d) 1369 cm−1, (e) 1285 cm−1, (f ) 1252 cm−1 and (g) ratio of
1252 cm−1/1285 cm−1 [i.e. (f )/(e)]. H&E image (top) was obtained from a
section adjacent to that used to obtain SNOM line profiles. Each line
profile has been normalised to its min/max values.

Analyst Paper

This journal is © The Royal Society of Chemistry 2021 Analyst, 2021, 146, 4895–4904 | 4901

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ly
 2

02
1.

 D
ow

nl
oa

de
d 

on
 6

/3
0/

20
24

 3
:3

9:
42

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D1AN00922B


with the relative discrimination between OSCC and lymphoid
tissue obtained from FTIR data [Fig. 3(c) compared to
Fig. 3(b)].

Taking the peak in the line profile of the topography as a
reference for the centre of the tumour, the nucleic acid line
profile shows a small central reduction in intensity in the
centre of the metastasis with two peaks in intensity ∼25 µm
on either side, which is consistent with the increased kerati-
nisation at that sub-site. Two further reductions in intensity
are observed at ∼50 µm from the centre and correlate with
the periphery of the metastasis, with each of these features
∼25 µm in width, roughly corresponding to 2–3 layers of
cancer cells. If this signal were based solely on absorbance
by nucleic acids, this would appear counter-intuitive
because the more differentiated, keratinised core of the
tumour most likely contains fewer, mitotically inactive
nuclei compared with the tumour periphery.33 However, if
we use 1252 cm−1 as a wavenumber characteristically
absorbed by the phosphate groups in all nucleic acids34,35

and in the phosphate groups of phospholipids,36 we hypoth-
esise that this increase in absorbance reflects a change in
the RNA signature and/or an increase in endoplasmic reticu-
lum commensurate with an increased proteinosynthetic
events in this sub-site.

The 1285 cm−1 line profile represents a complex pattern of
relative absorbance across the whole section, but notably
indicates an increase immediately to the right of the tumour
centre. The amount and distribution of collagen, including
fibre alignment, density, width length and straightness,
appear to differ between cancer types and at different sites
within a tumour.37,38 These attributes have an effect on inva-
sion, metastasis and apoptosis as well as being a prognostic
factor correlated with cancer differentiation, invasion, lymph
node metastasis, and clinical stage. Collagen concentration is
also influenced by the hypoxic microenvironment39 and
affects intensity of immune cell response.40 It is thus plaus-
ible that the differences observed in the 1285 cm−1 SNOM
line profiles are due to more subtle changes in collagen fibre
structure than in concentration and require further
investigation.

Conclusions

A novel machine learning algorithm, MA, has been shown to
accurately discriminate between OSCC nodal metastasis and
surrounding lymphoid tissue on the basis of a single metric,
the ratio of FTIR intensities at 1252 cm−1 and 1285 cm−1. This
metric yields discriminating sensitivities, specificities and pre-
cision of 98.8 ± 0.1%, 99.89 ± 0.01% and 99.78 ± 0.02%,
respectively, and an AUC of 0.9935 ± 0.0006. However, the
topographically different periphery and highly keratinised
centre of the metastasis are not discriminated by the metric in
the diffraction-limited FTIR images.

SNOM images of the tissues obtained at a number of key
wavenumbers, with a higher spatial resolution, show variations

in chemistry with a feature size down to ∼4 µm. The image
obtained from the ratio of the intensities of the SNOM images
obtained at the discriminating wavenumbers supports the
finding from the FTIR images that the discrimination between
the two tissue types is dominated by the contribution from the
1252 cm−1 signal which is representative of nucleic acids.
Additional insight into the chemistry is revealed by line pro-
files of the SNOM intensity obtained at specific wavenumbers,
representative of particular chemical moieties, in the region of
the OSCC–lymphoid tissue interface. The differences between
the periphery and the centre of the metastasis reflect our
current biological knowledge, but also raise additional, more
subtle, questions at the cellular level.

This study demonstrates that a combination of the MA tech-
nique applied to labelled FTIR spectra together with SNOM
images obtained at key wavenumbers identified by MA pro-
vides insight into the chemistry of tissues.
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