Issue 15, 2021

Liquid–liquid interfacial self-assembled triangular Ag nanoplate-based high-density and ordered SERS-active arrays for the sensitive detection of dibutyl phthalate (DBP) in edible oils

Abstract

DBP, one of the phthalic acid esters (PAEs), is known as an endocrine disruptor and is toxic to humans in abnormal concentrations. Here, a high-density and ordered SERS substrate based on the self-assembly of triangular Ag nanoplate (TAgNP) arrays is developed for DBP detection. Benefiting from the ordered arrangement and sharp corners of TAgNPS, the arrays can provide sufficient and uniform hotspots for reproducible and highly active SERS effects. Using Rhodamine 6G (R6G) as a reporter molecule, the SERS enhancement factor (EF) of the TAgNP arrays was found to be as high as 1.2 × 107 and the relative standard deviation was 6.56%. As a trial for practical applications, the TAgNP array substrates were used for the detection of dibutyl phthalate (DBP) in edible oils. In this assay, edible oil samples were added to hexane as an organic phase for the formation of the TAgNP arrays, which caused DBP to be loaded at hotspots. DBP in edible oils could be identified at concentrations as low as 10−7 M. This SERS substrate based on the TAgNP arrays has great potential applications in the high sensitivity and reproducible detection of contaminants in food.

Graphical abstract: Liquid–liquid interfacial self-assembled triangular Ag nanoplate-based high-density and ordered SERS-active arrays for the sensitive detection of dibutyl phthalate (DBP) in edible oils

Supplementary files

Article information

Article type
Paper
Submitted
25 Apr 2021
Accepted
23 Jun 2021
First published
24 Jun 2021

Analyst, 2021,146, 4858-4864

Liquid–liquid interfacial self-assembled triangular Ag nanoplate-based high-density and ordered SERS-active arrays for the sensitive detection of dibutyl phthalate (DBP) in edible oils

S. Xu, H. Li, M. Guo, L. Wang, X. Li and Q. Xue, Analyst, 2021, 146, 4858 DOI: 10.1039/D1AN00713K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements