Issue 4, 2021

Two stage, nested isothermal amplification in a single tube

Abstract

Sensitive, specific and rapid molecular diagnosis of respiratory diseases in animals and humans is critical to facilitate appropriate control measures and treatment. Conventional polymerase chain reaction (PCR)-based molecular diagnostics requires relatively expensive equipment and trained staff, restricting its use to centralized laboratories with significant delays between sample collection and test results. Herein, we report a highly sensitive, rapid, point-of-need, two-stage-molecular test that requires minimal instrumentation and training. Our test, dubbed Penn-RAMP, combines recombinase polymerase amplification (RPA, 38 °C) and loop-mediated isothermal amplification (LAMP, 63 °C) in one tube, enabling nested, two-stage isothermal amplification. We demonstrate Penn-RAMP's efficacy by testing for two common viral respiratory diseases of chickens: infectious laryngotracheitis (ILT) and infectious bronchitis (IB) that impose great economic burden worldwide. Test results of clinical samples with our closed-tube Penn-RAMP assays concord with the gold standard quantitative PCR (qPCR) assay; with 10-fold better limit of detection than LAMP and qPCR. Our closed-tube Penn-RAMP assays have the potential to greatly reduce false negatives while requiring minimal instrumentation and training.

Graphical abstract: Two stage, nested isothermal amplification in a single tube

Supplementary files

Article information

Article type
Paper
Submitted
12 Sep 2020
Accepted
15 Dec 2020
First published
17 Dec 2020

Analyst, 2021,146, 1311-1319

Two stage, nested isothermal amplification in a single tube

M. El-Tholoth, E. Anis and H. H. Bau, Analyst, 2021, 146, 1311 DOI: 10.1039/D0AN01835J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements