Issue 37, 2020

High catalytic efficiency from Er3+-doped CeO2−x nanoprobes for in vivo acute oxidative damage and inflammation therapy

Abstract

Cerium oxide nanoparticles (NPs) due to their advanced catalytic performance have been widely used to treat oxidative damage. However, Ce2O3 NPs have not been further investigated in the treatment of acute oxidative injury in vivo. It is meaningful to improve the efficiency for treatment of acute oxidative injury with NPs in vivo. In this report, we designed Er3+-doped Ce2O3 (Er/Ce2O3) NPs with a size of 7.9 nm, which were used to treat acute liver injury. Er/Ce2O3 NPs realized high-efficiency catalysis of hydrogen peroxide (H2O2) at room temperature. An acute liver damage model was established through intraperitoneal injection of lipopolysaccharide (LPS) in C57 mice. By analyzing histopathological and biochemical indexes, Er/Ce2O3 NPs showed a significant improvement in LPS-induced acute liver injury. Acute liver oxidative damage can be treated within 24 hours, which proved the high catalytic efficiency of Er/Ce2O3 NPs in vivo. The activities of SOD, GPx and CTA increased and production of ROS decreased with Er/Ce2O3 NP treatment in comparison with LPS-induced injury, indicating that the mechanism of Er/Ce2O3 NPs in the treatment of acute oxidative damage of liver was mainly via catalysis of ROS products. Moreover, the protein expression levels of TNF-α, CD45 and IL-1β in liver decreased in the Er/Ce2O3 NPs-treated group, which indicated that Er/Ce2O3 NPs have the function of anti-inflammation property. Therefore, Er/Ce2O3 NPs can be applied to treat and prevent diseases caused by acute oxidative damage.

Graphical abstract: High catalytic efficiency from Er3+-doped CeO2−x nanoprobes for in vivo acute oxidative damage and inflammation therapy

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2020
Accepted
10 Aug 2020
First published
25 Aug 2020

J. Mater. Chem. B, 2020,8, 8634-8643

High catalytic efficiency from Er3+-doped CeO2−x nanoprobes for in vivo acute oxidative damage and inflammation therapy

Y. Li, Y. Li, Y. Bai, L. Lin and Y. Sun, J. Mater. Chem. B, 2020, 8, 8634 DOI: 10.1039/D0TB01463J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements