Issue 36, 2020

Dual-responsive TPGS crosslinked nanocarriers to overcome multidrug resistance

Abstract

Efficient delivery of chemotherapeutic agents into tumor cells and reversal of chemoresistance are crucially important to enhance cancer therapy. We fabricated pH/redox dual responsive nanocarriers based on cell penetrating peptides (TAT) functionalized TPGS (cTAT-TPGS) and polypeptide (PEG-b-poly(aspartic-lipoic acid), PPAL) to reduce the permanent drug release and overcome multidrug resistance. TAT was used to functionalize TPGS and shielded by pH-responsive fatty acids, and polypeptides with lipoic acid side chains (PPAL) were synthesized. Reversibly crosslinked hybrid micelles (RCMs) were fabricated based on cTAT-TPGS and PPAL. RCMs nanocarriers exhibited acid-responsive charge reversal and redox-responsive drug release. The in vitro results showed that the RCMs could be efficiently internalized by the MCF-7/ADR cells in an acidic microenvironment and inhibited the DOX efflux, causing a higher cytotoxicity than non-crosslinked nanocarriers. Furthermore, the dual-responsive structure effectively prolonged the circulation time of RCM nanocarriers and achieved a high level of accumulation in cancer cells in vivo, leading to much more effective inhibition of tumor growth. The DOX-loaded RCMs also showed excellent biosafety, especially for the myocardium tissue. This novel strategy provided an effective platform for drug target delivery and reversal of MDR.

Graphical abstract: Dual-responsive TPGS crosslinked nanocarriers to overcome multidrug resistance

Supplementary files

Article information

Article type
Paper
Submitted
02 May 2020
Accepted
27 Jul 2020
First published
28 Jul 2020

J. Mater. Chem. B, 2020,8, 8383-8394

Dual-responsive TPGS crosslinked nanocarriers to overcome multidrug resistance

L. Li, T. Liu, J. Liao, Z. Zhang, D. Song and G. Wang, J. Mater. Chem. B, 2020, 8, 8383 DOI: 10.1039/D0TB01140A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements