Grafting conductive polymers on graphene oxide through cross-linker: a stepwise approach†
Abstract
A three-step reaction furnished a composite of graphene and a conductive polymer. In the first step, graphene oxide was modified with a diamine, which acted as a linker for polymer attachment. In the second step, an initiating site was attached to the free amine of the linker. Finally, a polymer was grown from the initiation site, and graphene oxide was reduced during polymer growth. The method does not require any catalyst, acid, or reducing agent, furnishing the graphene–polymer composite in a straightforward procedure. Various instrumental techniques, including step-by-step AFM analysis, were used to characterize the structure of the products in each step and confirm the covalent functionalization among graphene oxide, cross-linker, and polymer. The average surface height was sequentially increased after each step, indicating the success of the sequential reactions. The graphene–polymer composite showed excellent electrochemical performance and stability compared with a composite prepared by physical mixing of graphene and polymer.