Issue 15, 2020

Thermo-photo catalytic CO2 hydrogenation over Ru/TiO2

Abstract

It is attractive to convert CO2 greenhouse gas into valuable compounds via photocatalysis with solar energy. One of the important processes is the photocatalytic hydrogenation of CO2. However, its current process still suffers from inefficiency. Herein, thermal energy was introduced to increase the driving force for photocatalysis, leading to efficient thermo-photo catalytic reduction of CO2 over a 1 wt% Ru/TiO2 catalyst in a fixed bed reactor. Even at a low temperature of 150 °C and 1 atm, a high yield of CH4 (1.72 mmol gcat−1 h−1) under weak sunlight irradiation (1 sun) was achieved, whereas no CH4 was detected without light irradiation. It is two orders of magnitude larger than most reported results, and twice of the recently reported maximum value under strong sunlight (14.5 sun) irradiation. Furthermore, the CH4 yield increased to 69.49 mmol gcat−1 h−1 at 300 °C, which is 3 times larger than that without light irradiation. The limitation of room-temperature photocatalytic CO2 hydrogenation and the advancement of the thermo-photo process are further revealed in terms of thermodynamics and kinetics.

Graphical abstract: Thermo-photo catalytic CO2 hydrogenation over Ru/TiO2

Supplementary files

Article information

Article type
Paper
Submitted
04 Dec 2019
Accepted
18 Mar 2020
First published
18 Mar 2020

J. Mater. Chem. A, 2020,8, 7390-7394

Thermo-photo catalytic CO2 hydrogenation over Ru/TiO2

C. Wang, S. Fang, S. Xie, Y. Zheng and Y. H. Hu, J. Mater. Chem. A, 2020, 8, 7390 DOI: 10.1039/C9TA13275A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements