The effects of bio-inspired micro/nano scale structures on anti-icing properties
Abstract
Ice formation and accumulation have detrimental effects on commercial surfaces and people's lives. The ice adhesion strength decreases with increasing surface hydrophobicity, and the superhydrophobicity of a surface can be constructed by a combination of low surface free energy and high surface roughness. Conversely, the characteristics of biological surfaces have aroused wide attention as a result of the superhydrophobicity of plants and animals, deriving from the synergistic effects of chemical compositions and multi-scale hierarchical structures. Therefore, inspired by bio-mimetic studies on biological surfaces, a lot of artificial bio-inspired superhydrophobic surfaces have been broadly designed and constructed. Herein, we aim to summarize the fundamental theories of surface wettability and recent progress in the fabrication of bio-inspired surfaces. The bio-inspired surfaces prepared by different facile methods not only have superhydrophobicity, but also have anti-icing/icephobic properties. In the end, some challenges and problems in the future study and advancement of bio-inspired superhydrophobic surfaces are proposed.