Issue 34, 2020

Driven dynamics in dense suspensions of microrollers

Abstract

We perform detailed computational and experimental measurements of the driven dynamics of a dense, uniform suspension of sedimented microrollers driven by a magnetic field rotating around an axis parallel to the floor. We develop a lubrication-corrected Brownian dynamics method for dense suspensions of driven colloids sedimented above a bottom wall. The numerical method adds lubrication friction between nearby pairs of particles, as well as particles and the bottom wall, to a minimally-resolved model of the far-field hydrodynamic interactions. Our experiments combine fluorescent labeling with particle tracking to trace the trajectories of individual particles in a dense suspension, and to measure their propulsion velocities. Previous computational studies [B. Sprinkle et al., J. Chem. Phys., 2017, 147, 244103] predicted that at sufficiently high densities a uniform suspension of microrollers separates into two layers, a slow monolayer right above the wall, and a fast layer on top of the bottom layer. Here we verify this prediction, showing good quantitative agreement between the bimodal distribution of particle velocities predicted by the lubrication-corrected Brownian dynamics and those measured in the experiments. The computational method accurately predicts the rate at which particles are observed to switch between the slow and fast layers in the experiments. We also use our numerical method to demonstrate the important role that pairwise lubrication plays in motility-induced phase separation in dense monolayers of colloidal microrollers, as recently suggested for suspensions of Quincke rollers [D. Geyer et al., Phys. Rev. X, 2019, 9(3), 031043].

Graphical abstract: Driven dynamics in dense suspensions of microrollers

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2020
Accepted
20 Jul 2020
First published
23 Jul 2020

Soft Matter, 2020,16, 7982-8001

Author version available

Driven dynamics in dense suspensions of microrollers

B. Sprinkle, E. B. van der Wee, Y. Luo, M. M. Driscoll and A. Donev, Soft Matter, 2020, 16, 7982 DOI: 10.1039/D0SM00879F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements