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Phase transitions on non-uniformly curved
surfaces: coupling between phase and location†‡

Jack O. Law, a Jacob M. Dean, §b Mark A. Miller *b and
Halim Kusumaatmaja *a

For particles confined to two dimensions, any curvature of the surface affects the structural, kinetic and

thermodynamic properties of the system. If the curvature is non-uniform, an even richer range

of behaviours can emerge. Using a combination of bespoke Monte Carlo, molecular dynamics and

basin-hopping methods, we show that the stable states of attractive colloids confined to non-uniformly

curved surfaces are distinguished not only by the phase of matter but also by their location on the

surface. Consequently, the transitions between these states involve cooperative migration of the entire

colloidal assembly. We demonstrate these phenomena on toroidal and sinusoidal surfaces for model

colloids with different ranges of interactions as described by the Morse potential. In all cases, the

behaviour can be rationalised in terms of three universal considerations: cluster perimeter, stress, and

the packing of next-nearest neighbours.

1 Introduction

Two-dimensional systems in which particles are confined to
surfaces of non-uniform curvature abound in nature. For
example, non-uniformly curved regions in cellular membranes
are necessary for many key biological processes, including the
sensing and trafficking properties of organelles such as the
Golgi apparatus.1 Non-uniform curvature is also found in
the capsid of the torovirus, which infects agricultural animals,2

and in the cubic phases of lipids commonly used in the formula-
tion and food industries.3 Furthermore, it is becoming increasingly
realistic to engineer artificial surfaces with specified curvature.
Techniques include a rotating cuvette,4 lithography,5 suspending a
liquid surface from a post,6 and 3D printing.7 These surfaces can
play host to a variety of two-dimensional systems, including
membrane proteins,1 stress fibres,8 active and passive liquid
crystals,9,10 capsid protein shells2,11 and colloidal particles
adsorbed onto a surface by depletion forces or tethered to one with
DNA.12,13 Additionally, it has been shown that the dimple patterns
in buckled curved elastic bilayers form a crystal structure with
similar properties to colloidal crystals on a curved surface.14

The practical importance of these systems, as well as their rich
and novel behaviour, mark them out for considerable scientific
interest. So far, most studies on the effects of curvature have
focused on the case of constant curvature, such as spheres.
Even in this simplest scenario, a wide range of phenomena are
observed which are absent on flat surfaces, including the presence
of defects and branching in the ground-state crystals,12,15,16 and
of modified nucleation pathways.17,18 These studies have been
successful in describing natural phenomena such as the structure
and formation of virus capsids,11 and the packing of particles on a
Pickering emulsion droplet.15

An even richer picture emerges for surfaces with varying
curvature, where the symmetry of the surface is broken.
Nucleating phases form preferentially in certain regions due
to the underlying curvature, and the free energy profiles may
include additional metastable minima.17,19 Crystal defects feel
a local potential that arises purely from the underlying
curvature.14,20 Topological defects also have preferential loca-
tions that depend on their type, as shown for nematic liquid
crystals4 and colloidal particles.21,22

To date, however, there is still no complete picture of
how non-uniform curvature affects the thermodynamics of
two-dimensional systems. In this article we consider clusters
of attractive colloidal particles confined to non-uniformly
curved surfaces. We identify three effects – relating to cluster
perimeter, local stress and the energetics of packing – and their
impacts on the structure and phase behaviour. An interesting
consequence of these considerations is that the stable phases
(gas, liquid, crystal) are located in different regions of the
surface, and phase transitions involve global translation of
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the cluster. While curvature sensing has previously been
reported, in most cases it is due to the architecture or aniso-
tropy of the particle or the molecule involved.23,24 In contrast,
here the particles are spherical and curvature sensing is instead
due to a cooperative effect. Moreover, the effect is phase-
dependent: it acts differently for liquid and crystal phases. It
is even possible for new states to emerge, producing states with
the same phase of matter but in different locations.

We begin with a brief description of our simulation methods,
before presenting a phase diagram for particles on a torus in the
canonical ensemble and studying the transitions between distin-
guishable states. Finally, we demonstrate the generality of the
effects by presenting similar phenomena on a sinusoidal surface.

2 Model and methods
2.1 Potential

We model the interactions between the particles with a trun-
cated, shifted and smoothed (tss) Morse potential, rescaled to
restore its well-depth e from before the shift. This potential has
an adjustable range parameter r, which is important because the
behaviour of crystals of attractive particles on curved surfaces is
known to depend on the softness of their interactions.11,12 The
pair potential energy is given by

UðrÞ ¼ �eUtssðrÞ=Utss r0ð Þ;

UtssðrÞ ¼ UMðrÞ �UM rcð Þ � r� rcð ÞdUM

dr

����
rc

" #
Y rc � rð Þ;

UMðrÞ ¼ ee�r r�r0ð Þ e�r r�r0ð Þ � 2
� �

;

(1)

where r is the separation of the two particles and r0 is the
equilibrium pair separation. These distances are measured along
the Euclidean line that joins the particles in three-dimensional
space, rather than along the geodesic on the two-dimensional
surface, as shown in Fig. 1. The Heaviside step function Y in
eqn (1) truncates the potential at a distance rc. For this work we
have chosen to set rc/r0 = 2.23, in line with comparable
investigations.11,25 The potential is plotted in Fig. 1.

2.2 Monte Carlo simulations

Canonical Monte Carlo (MC) simulations are used to survey the
thermodynamic properties for a given number N of particles
over a range of temperatures and values of r. The particle
positions are specified in a system of two-dimensional curvi-
linear coordinates that are natural for the surface in question,
such as the toroidal (f) and poloidal (y) angles of the torus in
Fig. 1. Uniformly distributed trial displacements are made in
the curvilinear coordinates of one particle per MC step, up to a
fixed maximum size (chosen to achieve an acceptance rate of
approximately 50%). Because of the nonlinearity of the coordi-
nates, the Metrpolis acceptance criterion must be generalised
to the form

Pacc ¼ min 1;
gn

go
exp

� Un �Uoð Þ
kBT

� �� �
(2)

in order to achieve uniform sampling on the surface. In eqn (2),
kB is Boltzmann’s constant and T is the temperature, Un/o is the
total potential energy of the displaced particle at its new/old
position, and gn/o is the square root of the determinant of the
metric tensor at the new/old position. Explicit expressions for
the g factors in terms of the relevant curvilinear coordinates will
be stated when the surfaces are introduced.

To simulate a liquid phase covering the entire surface, we
will need grand canonical MC, where N fluctuates in response
to an imposed chemical potential m. In practice,26 the control
parameter is the activity z(m) = A0L

�2 exp(m/kBT), where A0 is the
area of the surface and L is the thermal de Broglie wavelength.
Working in terms of z avoids the need to specify L. In order to
produce uniformly distributed trial positions for the particle-
insertion moves, we generate random coordinates distributed
according to the metric factor g by rejection sampling.27

2.3 Molecular dynamics simulations

Molecular dynamics (MD) simulations will be used to observe
transitions between different states on the phase diagram as
a function of time. In these simulations, three-dimensional
Cartesian coordinates are used and a one-body RATTLE-like
constraint is applied to each particle. The algorithm forces the
particles to remain on the surface and to have velocity vectors
that lie in the local tangent plane of the surface.28 We use the
implementation by Paquay et al.28 in the LAMMPS package.29

For compatibility with the MC simulations, the MD simula-
tions are performed at constant temperature using a Langevin
thermostat. The damping time is set to 10 in the natural Morse
time units of r0(m/e)1/2, where m is the mass of one particle.

2.4 Global optimisation

We use basin-hopping with parallel tempering30 (BHPT) in the
GMIN program31 to search for ground-state structures, i.e., the
globally lowest point on the potential energy landscape of a
given system.

Fig. 1 Left: Toroidal surface, coloured by the local Gaussian curvature K in
units of 1/r0

2. The two size parameters a and c are labelled on the cross-
section. The angles y and f specify the location of particles on the surface.
Also depicted are two particles and the line through which the Morse
potential acts. Note that the potential depends on the Euclidean distance
marked r in three-dimensional space, rather than on the geodesic separa-
tion of the particles on the surface of the torus. Right: The truncated,
shifted, smoothed and scaled Morse potential for some representative
values of r.
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The basic basin-hopping algorithm32 is a MC simulation on
the transformed potential energy surface

Ũ(X) = lmin[U(X)],

in which the energy Ũ assigned to a configuration X is that
obtained by performing a local minimisation (lmin) of the true
potential U starting from X. Hence, the potential energy surface is
mapped onto a series of plateaux, each corresponding to the basin
of attraction of a mechanically stable structure. This transforma-
tion removes the barriers between directly connected pairs of
minima, thereby facilitating exploration of the surface and identifi-
cation of the global minimum, whose energy is not affected.

Basin-hopping calculations can nevertheless become trapped
in limited regions of the potential energy surface, especially if
the surface is rough or contains multiple funnels. As in ordinary
MC simulations, the efficiency of sampling can be enhanced
with parallel tempering (also known as replica exchange).33,34

In BHPT,30 several basin-hopping replicas run in parallel at
different temperatures, and trial moves occasionally attempt to
exchange the configurations currently being sampled by two
runs with adjacent temperatures. An exchange between replicas
i and j with reciprocal temperatures bi and bj is accepted with
probability

Pexch
ij = min[1,exp{�(bi � bj)(Ũ(Xi) � Ũ(Xj))}].

For BHPT on a torus, a single MC step involves displacing all
particles by moving each one randomly onto a small sphere
centred on its original position and then projecting back to the
closest point on the torus. This procedure does not strictly
preserve detailed balance, but this is not important since BHPT
only attempts to locate the global potential energy minimum
rather than to sample a thermodynamic ensemble. The advan-
tage of these moves is that they produce roughly uniform
displacements at all points on the torus, unlike steps of fixed
maximum size in the toroidal and poloidal angles.

3 Results
3.1 Localised states on a torus

We have chosen a toroidal surface as our primary example of a
surface with varying curvature for the following reasons: it is
relatively simple, both mathematically and conceptually; it has
regions of positive and negative Gaussian curvature; some
progress is being made in reproducing it experimentally;4,35,36

and related surfaces can be found in nature (for example the
torovirus mentioned above2).

The toroidal case is governed by three independent length
scales: the major radius c and the minor radius a of the torus,
and the (inverse) range of the Morse potential r, all of which
can be expressed in relation to the nominal particle diameter r0

(see Fig. 1). The metric g factors appearing in eqn (2) are given
by g = c + acos(y), where y is defined in Fig. 1. We focus on
simulations carried out with N = 300 particles on a torus with
a = 5r0 and c = 7r0, which we call a ‘‘5–7 torus’’. This case
illustrates all the general phenomena that we need to discuss.

However, it is natural to ask how the detailed picture changes
upon varying the number of particles or the geometry of the
surface. In Section S3 of the ESI‡ we have therefore provided
comparisons for smaller and larger values of N on the same
torus, as well as for N = 300 on the thinner 3.5–10 torus.

Surface curvature can influence the free energy of a cluster
on the surface in three ways:

(1) The length of the perimeter of a cluster of a given area
depends on the underlying curvature, changing the line tension
contribution to the free energy.17 In regions of positive Gaus-
sian curvature, the perimeter is generally smaller than on a
surface with zero or negative Gaussian curvature.

(2) A hexagonal crystal structure is necessarily distorted in
regions of non-zero Gaussian curvature, leading to a stress that
penalises the free energy.11,12

(3) Curvature can make the interactions between next-nearest
neighbours more favourable. For example, in a region of large
negative Gaussian curvature (a saddle), the area immediately
around a given particle increases more rapidly with distance on
the curved surface than it would on a plane, allowing next-
nearest neighbours to approach more closely. Furthermore, if
the interactions act through space as they do in our model
(rather than geodesically along the curved surface), any region
with a large principal curvature will bring next-nearest neigh-
bours closer in space. This latter effect can contribute even if the
Gaussian curvature is zero (for example on cylinders and cones).

We will refer to the three contributions by the italicised terms
above. The effects respond to curvature in different ways and
they apply to the conventional states of matter (gas, liquid, solid)
to different extents. The resulting couplings compete with each
other to produce a rich set of stable states that are defined not
only by the phase but also by the location of matter on the
surface. We will denote the phase by a letter (G, L, C, X), and the
location by the sign of the local Gaussian curvature (+, �, 0, �).
The meanings of the symbols are summarised in Table 1.

It is important to note that in any system with a small
number of particles, phase transitions are somewhat smeared
out. In particular, the onset of ordering in crystal-like states of
our system is not sharp. Hence, Table 1 includes a condensed
(C) phase within which the degree of crystallinity varies smoothly
from liquid-like to crystal-like. We quantify the crystallinity by
counting the number of particles NX in a crystalline environ-
ment. To determine whether a given particle is crystalline, we
select all particles within r = 1.45r0 of it. These n neighbours are

Table 1 Symbols used to denote the phase and location of thermody-
namically stable states

Symbol Meaning

G Gas phase (covering whole surface)
L Liquid phase
C Condensed phase (intermediate order)
X Crystal phase
+ Region of positive Gaussian curvature
� Region of negative Gaussian curvature
0 Region of zero Gaussian curvature (and vicinity)
� Spanning regions of negative and positive curvature
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gnomonically projected onto the plane tangent to the surface at
the target particle.37 The magnitude of the bond-orientational
order parameter is then calculated using

jcj ¼ 1

6

Xn
j¼1

e6iyj

�����
�����;

where yj is the angle between the target particle, the jth neigh-
bour and some arbitrary local reference direction38 (|c| does not
depend on the choice of this direction). Particles with |c| 4 0.6
are considered crystalline. It is important to note that this
definition of |c| does not count particles on the edge of an
ordered cluster as crystalline because of the missing neighbours.

Canonical Monte Carlo simulations of 300 particles on
the 5–7 torus reveal four stable states: G, L�, C+ and X0. Snap-
shots of these states are shown in Fig. 2 and their regions of
thermodynamic stability are mapped out as a ‘‘phase diagram’’’ in
the plane of temperature and potential range r in Fig. 3. We
briefly survey the origin of these states before examining their
coexistence and interconversion in Section 3.2, and analysing the
competition between them in Section 3.3.

As expected, the particles cover the torus in a low-density
gas-like state G at sufficiently high temperature for any range of
the potential. Lowering the temperature at long range (r r 6)
leads to a gas–liquid transition. In the liquid state, the neigh-
bour effect (described above) is strong enough to drive the
cluster to the centre of the torus, where the mean curvature is
largest. The Gaussian curvature in that region is negative, so
this localised state is denoted L�. Reducing the temperature
further produces a driving force towards crystalline order,
but regions of high Gaussian curvature are incompatible with
regular hexagonal packing and the stress effect becomes

increasingly important. The cluster therefore moves to a C+
state on the outside of the torus, where the mean curvature is
lower (thereby relieving some stress) but where it can still adopt
a compact shape to reduce its perimeter. We measure the order
in the C+ state by the number NX of crystalline particles, i.e., the
number of particles with |c| 4 0.6. Plots and a discussion of
the distribution of |c| itself can be found in ESI,‡ Section S2.
Defined this way, the structure within the C+ state varies
smoothly between liquid and crystalline, as indicated by the
intensity of the shading in Fig. 3 However, the C+ state is
separated from the neighbouring L� and X0 states by decisive
shifts in location of the cluster. In Section 3.2 we will confirm
that the C+ state is a distinct free-energy minimum.

Moving at constant temperature to shorter-ranged potentials
(horizontally to the right in Fig. 3), another transition is
reached. Deviations from perfect hexagonal packing become
more energetically costly because of the increasing second
derivative at the minimum of the potential well (Fig. 1), and
the stress effect starts to dominate over the perimeter effect. As
a result, a crystal state, X0, forms as a ribbon on the top (or
bottom) of the torus, where the Gaussian curvature, and there-
fore the stress, is lowest. This highly elongated structure comes
at the expense of a long perimeter. Heating this crystal causes it
to sublime directly back to the G state.

As a reference system without the effects of curvature, we may
compare a square plane of edge 37.17r0 with the same area as the
5–7 torus but with conventional periodic boundary conditions. The
phase diagram for 300 Morse particles on the plane contains the
three standard phases G, L and X and is given in Fig. S5 (ESI‡).
Apart from the absence of location specifiers, the phase diagram is
similar to that in Fig. 3. The new C+ condensed state on the torus
mostly occupies regions that would be crystalline (X) on the plane
where the potential is soft enough for some stress to be accom-
modated in return for a shorter perimeter. Relative to the planar
system, curvature also moves the gas–liquid boundary slightly in
favour of the liquid, due to the additional liquid stability that
comes from the neighbour effect in the presence of curvature.

Fig. 2 Snapshots of the states labelled in the phase diagram of Fig. 3.
(A) G, at r = 6, kBT/e = 0.72; (B) L�, at r = 6, kBT/e = 0.42; (C) C+, at r = 4,
kBT/e = 0.32; and (D) X0, at r = 18, kBT/e = 0.27. Particles are coloured by
the number of nearest neighbours. The states are named according to the
convention in Table 1.

Fig. 3 Phase diagram for 300 Morse particles on a 5–7 torus. The
saturation of the blue symbols represents the crystallinity, showing a
steady increase as the C+ state is cooled. Snapshots of the points labelled
A–D are given in Fig. 2.
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Both the toroidal and planar systems lose their liquid phases
at high r. This happens for the same reasons as in three-
dimensional systems; a decrease in the range of the potential
causes the gap between the triple point and the gas–liquid
critical point to grow narrower until the gap vanishes alto-
gether, leaving no temperature at which the liquid is thermo-
dynamically stable.39

As an example of a torus with a different aspect ratio, we
have also studied the torus with a = 3.5r0 and c = 10r0, which
has the same surface area as the 5–7 torus. The thinner tube
and wider bore of the 3.5–10 torus introduce a liquid-like state
that is stabilised by wrapping round the tube to reduce the
perimeter. A more detailed treatment of this case, including the
phase diagram, is provided in ESI,‡ Section S3D.

3.2 Free energy surfaces and dynamics

Returning to the main case of the 5–7 torus, a direct implica-
tion of the phase diagram in Fig. 3 is that each of the localised
states is the global free energy minimum for a range of T and r.
At the boundaries between states, we expect pairs of free energy
minima to coexist and to be separated by a barrier. Because of
the coupling of phase and location, the pathways between
free energy minima must involve migration of matter on the
toroidal surface.

To visualise the free energy and trajectories, we project onto
the plane of two order parameters. To track the phase, one of
the order parameters is the number NX of crystalline particles,
as defined in Section 3.1. To track location, the second order

parameter is the density n+ of particles in a region of positive
Gaussian curvature (the ‘‘outside’’ of the torus in Fig. 1), as a
fraction of the total density n: n+/n. The free energy surface is
now constructed by accumulating a two-dimensional histogram
H of the order parameters during a canonical MC simulation
and taking F = �kBT ln H. As we shall see, the barriers on this
surface are sufficiently low that no special sampling techniques
are needed to obtain good statistics.

In Fig. 4, we present the free energy surface at three different
points on the phase diagram. Each point lies close to a phase
transition and shows two minima, indicating that two states
coexist. Fig. 4(A) is taken close to the transition between the
L� and C+ states. The transition involves both a dramatic shift
of particles towards the outside of the torus and a slight increase
in crystallinity (although at this temperature, the C+ phase is still
liquid-like, see Fig. 3).

Fig. 4(B) shows the vicinity of the transition from the C+
state to the X0 state. As the temperature here is lower, the C+
phase is more crystalline and therefore appears further along
the vertical axis of the free energy plot than in panel (a).
The evolution of the minimum on the free energy surface with
temperature is smooth and does not involve any barriers,
justifying our treatment of C+ as a single phase of intermediate
crystalline character. The figure shows that the transition from
C+ to X0 is accompanied by a slight increase in crystallinity and
a shift of particles away from the outside of the torus.

The last panel, Fig. 4(C) shows the coexistence between the
G and X0 states, which mainly involves a change in crystallinity

Fig. 4 Upper panels: free energy surfaces for 300 Morse particles on a 5–7 torus with minima highlighted by red dots. (A) At r = 6 and kBT/e = 0.39. The
red dots indicate the L� (left) and C+ (right) states. (B) At r = 7 and kBT/e = 0.25. The red dots indicate the X0 (left) and C+ (right) states. (C) At r = 20 and
kBT/e = 0.30. The red dots indicate the G (bottom) and X0 (top) states. Lower panels: samples of the corresponding dynamic trajectories switching
between the free energy minima, with horizontal lines denoting the minima. Time is measured in reduced units t� ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffi
e=mð Þ

p 

r0, where t is the real time

and m is the mass of a particle.
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as both states are distributed fairly evenly between the inside
and outside of the toroidal surface.

Having identified these coexisting pairs of states, we then
used surface-constrained molecular dynamics simulations to
observe the bulk translation of the clusters as the system
switched back and forth between the states. For each free
energy surface in Fig. 4, we performed a single simulation at
fixed temperature and r and monitored the order parameter
most relevant to the transition in question. The plot below each
free energy map shows part of the resulting equilibrium time
trace of the order parameter. In each case, the trace shows rapid
switches of the system between two states, with comparatively
long residence times within the states, confirming the inter-
pretation of the distinct macrostates identified in Section 3.1.
In the ESI‡ we have included videos that visualise an example
pathway for each of the three transitions.

3.3 The competing effects of curvature

In this section, we provide a more quantitative analysis of the
three effects of curvature identified in Section 3.1. The results
provide insight into the competition between the effects and
the factors that influence the points where they balance. In
turn, this helps to generalise the principles to other examples of
non-uniformly curved two-dimensional systems.

For liquid-like states, the optimal location is determined by
the perimeter and neighbour effects. On the torus, these two
effects compete with each other because the most strongly
curved region (beneficial for next-nearest neighbours) is on
the inside of the torus, but the sign of the Gaussian curvature is
negative there, so the perimeter is larger for a given area
(costing line energy). We have obtained the optimal perimeters
as a function of the enclosed area using constrained minimisa-
tion in the Surface Evolver software.40 By carefully choosing the
symmetry of the initial patch about poloidal angles y = 0 and
1801, the optimisation can be performed separately for patches
in the regions of positive and negative curvature, respectively.
The two perimeters are plotted in Fig. 5(A), showing the
increasing advantage of the C+ state with area.

The contribution of the potential energy to the neighbour
effect can also be quantified by examining the mean energy per

particle as a function of the poloidal angle y in a liquid that
covers the whole surface. We have obtained a specimen system-
covering fluid by performing a grand canonical simulation
of particles with range parameter r = 6 at a temperature of
kBT/e = 0.48 and activity z = 57.544. The location dependence of
the mean potential energy is shown in Fig. 5(B), where it can be
seen that the energy per particle is some 5% lower on the inside
of the torus than on the outside.

The plots in Fig. 5 demonstrate two of the key ingredients in
the perimeter and the neighbour effects. Other important
considerations include the line tension on the perimeter itself,
which is much harder to evaluate. However, the full complexity
of the resulting competition between the C+ and L� states can
be seen by tracking the relative depths of the corresponding
free energy minima in Fig. 4(A) as a function of the total
number N of particles in the system. For potential range r = 6
and temperature kBT/e = 0.37, the two states coexist as (meta)-
stable minima at least from N = 100 to 300 and their relative
free energies are shown over this range in Fig. 6. Interestingly,
the lines cross twice, emphasising the nonlinearity of the
perimeter and neighbour effects with respect to N.

The phase diagram in Fig. 3 shows that there is a competi-
tion between the C+ and X0 states as a function of the potential
range parameter r at low temperature. Under these conditions,
the potential energy is the dominant contribution to the free
energy and it is instructive to locate the global potential energy
minima using BHPT. The optimisation runs used eight parallel
replicas with an exponential distribution of temperatures in the
range 0.3 r kBT/er 2 and up to 60 000 basin-hopping steps per
case. Runs were initiated with quenched structures from cano-
nical MC simulations. Fig. 7 shows the resulting putative global
minima for a soft (r = 4) and a stiff (r = 18) interaction potential
for our case study of N = 300, while sequences of global minima
from N = 100 to 500 are presented in Section S1A of the ESI.‡
To highlight any packing defects in these structures, we have
depicted them by their Voronoi tesselations. To avoid ill-
defined Voronoi cells at the edges of the clusters, any Voronoi
vertex lying further than 1.3r0 from its particle has been deleted
in the analysis, and any Voronoi cell with fewer than five edges

Fig. 5 (A) Minimised perimeter of the liquid–gas interface for the C+ and
L� states as a function of the area of the liquid region. (B) Average potential
energy per particle in a surface-covering liquid state as a function of the
poloidal angle y, taken from a grand canonical simulation at r = 6, kBT/e =
0.48 and activity z= 57.544.

Fig. 6 Depth of the free energy minima of the L� and C+ states on the
5–7 torus for r = 6 at reduced temperature kBT/e = 0.37. The origin of the
vertical scale is arbitrary; only comparisons between the two lines matter.
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is not displayed in the figure. These measures have the effect of
discarding most cells corresponding to edge particles but they
do not alter the depiction of the cluster interiors.

The long-ranged potential is able to accommodate the stress
on the hexagonal lattice in the region of positive Gaussian
curvature on the outside of the torus, characteristic of the C+
thermodynamic state [Fig. 7(A)]. This stress is manifest mostly
as a systematic and delocalised distortion of the packing, but a
packing defect is also visible in the centre of the cluster. The
defect consists of three pentagonal tiles and two heptagonal
tiles, giving a positive overall topological charge of +1, as
expected in a region of positive Gaussian curvature.41 Such
defects are too costly for short-ranged potentials because a
lower formal coordination number involves losing most (not
just some) of the interaction with a neighbouring particle. Even
delocalised stress is highly unfavourable because of the sensi-
tivity of the potential near its minimum. Hence, the global
minimum changes to lie in the flattest region of the surface like
the X0 thermodynamic state [Fig. 7(B)]. The cluster is now far
less compact and the increase in its perimeter, demarcated by
low-coordination particles, is readily visible.

We can estimate the point at which the X0 state takes over
from C+ by tracking the energy of the two structures depicted in
Fig. 7 as a function of r. We do this by incremental changes in
r, each followed by a local minimisation to relax the structure
to the point of mechanical equilibrium without significant
rearrangement. Both structures persist as (meta)stable minima
over a wide range of r. The resulting potential energy curves are
compared in Fig. 7(C), showing that they cross at r E 8, which
is consistent with the boundary between C+ and X0 in the
finite-temperature phase diagram of Fig. 3. Further insight can
be gained from the comparison in Fig. 7(C) by decomposing the
energy into contributions with a direct physical interpretation.
This analysis is provided in Section S1B of the ESI.‡

The competition between the perimeter, stress and neigh-
bour effects is altered by the scale, as well as by the shape, of
the surface. Any given torus has a finite surface area and – like a
sphere – can only accommodate a limited number of particles

before overcrowding incurs a steep free energy penalty.18 How-
ever, consider a thought experiment in which the two radii a
and c of the torus are both increased by a factor f, keeping the
aspect ratio fixed, and the number of particles N is increased by
f 2 to keep the surface coverage approximately equal. This
scaling would uniformly reduce the Gaussian curvature by a
factor of 1/f 2. Hence, the neighbour effect, which relies on local
curvature, would become less important with increasing f, and
this is likely to destabilise the L� state. However, the perimeter
would increase approximately as f (for a given cluster shape)
and, for states with crystalline character, there would also be an
increase in stress.12 As we have seen (for example, in Fig. 7),
stress introduces a complex interplay between elastic energy
and defects, the energetic cost of which depends on the
interaction potential. Hence, we can expect a non-trivial evolu-
tion of structure and stability with overall scale of the host
surface, even at fixed aspect ratio.

3.4 A sinusoidal surface

To demonstrate that the phenomena seen on the torus can be
extended to other curved surfaces, we have performed simula-
tions on a sinusoidal surface with periodic boundaries, defined
in Cartesian coordinates x, y, z by

z = h sin(2px/L)sin(2py/L).

We set h = 7.5r0 and L = 30.75r0 so that the area and maximum
Gaussian curvature of this surface match those of the 5–7 torus.
The metric g factors for use in eqn (2) are now given by

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ph
L

� �2

1� cos
4px
L

� �
cos

4py
L

� �� �
þ 1

s
:

Snapshots of the stable states of this system are presented in
Fig. 8 and the phase diagram is shown in Fig. 9. This system
has only three states: G, C+ and X0. At high temperature, the
system is found in the G state. For softer (longer-ranged)
potentials, as the system is cooled the particles condense into
a liquid phase, C+, which is always found on one of the peaks or
troughs of the surface. This configuration is preferred both for
its short perimeter and for its high mean curvature (leading to a
favourable neighbour effect). As the system is cooled further,
the condensed cluster becomes more crystalline. Although the
contribution of stress in the crystal to the free energy is
increasing, at low r the cluster does not move again, unlike on
the torus which has the transition from L� to C+. We suggest that
this is because the line tension is high enough that, unlike on the
torus, moving to a less curved region with a longer perimeter would
not be favourable. However, at higher values of r, the system
crystallises around the flanks of the peaks, where the Gaussian
curvature is lowest, giving an X0 state. As in the corresponding X0
state on the torus, as well as in the branched structures
observed by Meng et al.12 on spherical droplets, a longer
perimeter is traded for less frustration in stiffer crystals.

An important message from comparing the torus and the
sinusoidal surface is that the relationship between the peri-
meter, stress and neighbour effects is determined by the shape

Fig. 7 Putative global potential energy minimum structures for N = 300
particles on the 5–7 torus for (A) range parameter r = 4 (C+ configuration),
(B) r = 18 (X0). The structures are depicted by their Voronoi tessellations
and the colour of each cell corresponds to the coordination number of the
particle that it contains (colour scheme as in Fig. 2). (C) Potential energy of
the C+ and X0 minima as a function of the range parameter r for N = 300
particles on the 5–7 torus.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
A

ug
us

t 2
02

0.
 D

ow
nl

oa
de

d 
on

 1
0/

17
/2

02
5 

4:
35

:1
8 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D0SM00652A


8076 | Soft Matter, 2020, 16, 8069--8077 This journal is©The Royal Society of Chemistry 2020

of the surface. For example, the regions of largest principal
curvature on the sinusoidal surface are the peaks and troughs,
where the Gaussian curvature is positive. Hence, the perimeter
and neighbour effects reinforce each other in this region. In
contrast, the largest principal curvature on a torus is around
the central bore, where the Gaussian curvature is negative,
leading to antagonism between the perimeter and neighbour
effects. Nevertheless, it is the same set of physical arguments
that comes into play in all cases.

4 Conclusions

We have shown that, in non-uniformly curved two-dimensional
systems, clusters of attractive colloids minimise their free
energy by adopting specific shapes and translating to specific
locations. The equilibrium shape and location depends not
only on the phase of matter in the cluster, but also on the range
of the interaction potential and the curvature of the underlying
surface. The coupling of phase to shape and location leads to
dramatic reorganisation of matter as the conditions are varied.
In particular, phase transitions can be accompanied by whole-
sale migration of matter to different parts of the surface. We
have demonstrated that these effects arise in systems where the
particles themselves are simple spheres with isotropic interac-
tions. These particles collectively respond to curvature despite

having no individual preference for a particular curvature or a
curvature-adapted shape.

We have identified three universal contributions to the free
energy that drive the behaviour: the length of the cluster perimeter,
the stress on packing induced by Gaussian curvature, and the
distances from a given particle to its next-nearest neighbours.
These considerations explain the four phase-location coupled
states that we observe on a torus and the three states on a
sinusoidal surface. Free energy calculations also showed the
barriers between these states and molecular dynamics simulations
confirmed the switching between them.

There are a number of avenues for future investigations in
which the phase behaviour is strongly affected by non-uniform
curvature. For instance, we expect additional levels of control
and rich behaviour in cases where surface curvature is coupled
with an anisotropic interaction potential or polydisperse mixtures.
It would also be interesting to analyse in detail the defects
observed in the C+ and X0 states, at both zero and finite tempera-
ture, and in particular to study whether they follow existing
predictions on how the number of defects depends on the amount
of curvature enclosed41,42 and the effects of thermal fluctuations.43

Another open question is the case where the confining surface is
flexible, where the curvature responds to the particles that are
confined upon it. This latter form of coupling is relevant, for
example, in a variety of clustering and aggregation phenomena
on lipid membranes.1

We hope our work will motivate experimental demonstra-
tions of the cooperative curvature-sensing effects shown in this
article, in both biological and engineered systems. Due to the
generality of the effects, the non-uniformly curved surface need
not be specifically toroidal or sinusoidal as in the examples
presented here.
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Fig. 8 Snapshots of states for 300 particles on a periodic sinusoidal surface. (A) G, at r = 4, kBT/e = 0.78; (B) C+, at r = 4, kBT/e = 0.39; and (C) X0, at
r = 20, kBT/e = 0.27. Particles are coloured by the number of nearest neighbours (see Fig. 2 for key).

Fig. 9 Phase diagram for 300 Morse particles on a periodic sinusoidal
surface as a function of the potential range parameter r and the reduced
temperature kBT/e. Snapshots of the points labeled A–C are given in Fig. 8.
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