Issue 26, 2020

Leidenfrost phenomenon during quenching in aqueous solutions: effect of evaporation-induced concentration gradients

Abstract

The minimum temperature limit for a sustained vapor film on a hot surface defines the well-known Leidenfrost temperature (LFT). LFT for pure fluids is typically a strong function of the surface tension. However, the effect of surface tension on LFT of aqueous additive solutions is confusing with many complicated trends. For example, despite an insignificant increase of ≈1 mN m−1 in surface tension, a substantial increase in LFT of ≈50 °C with aqueous salt and sugar solutions has been reported in comparison to pure water. Conversely, no appreciable change in LFT (within ±2 °C) is observed despite a substantial drop of up to ≈30 mN m−1 in surface tension upon varying the concentration of surfactant additives in aqueous solutions. Here, we perform simultaneous thermal, visual, and acoustic characterization of pool quenching experiments with aqueous solutions of salt, sugar, surfactant, and ionic liquids. We model the evaporation-induced increase in the concentration of the non-volatile additives at the liquid–vapor interface using Fick's second law of diffusion. We show that the localized concentration buildup of additives at the liquid–vapor interface dramatically alters the surface tension values in comparison to the typical equilibrium values estimated otherwise. We use these modified surface tension values to correlate the diverse set of experimental LFT data reported in our work and in the literature using a unified framework. We believe that these clarifications regarding the Leidenfrost mechanism will encourage the use of additives in various applications, specifically those where surface modification strategies may not be practically feasible.

Graphical abstract: Leidenfrost phenomenon during quenching in aqueous solutions: effect of evaporation-induced concentration gradients

Article information

Article type
Paper
Submitted
09 Apr 2020
Accepted
05 Jun 2020
First published
05 Jun 2020

Soft Matter, 2020,16, 6145-6154

Leidenfrost phenomenon during quenching in aqueous solutions: effect of evaporation-induced concentration gradients

V. Kumar, K. N. R. Sinha and R. Raj, Soft Matter, 2020, 16, 6145 DOI: 10.1039/D0SM00622J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements