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al synthesis in automated and
robotic flow

Tomas Hardwickabc and Nisar Ahmed *a

Continuous flow chemical synthesis is already known to have many attributes that give it superiority over

batch processes in several respects. To expand these advantages with those from automation will only

drive such enabling technologies further into the faster producing, more efficient 21st century chemical

world. In this report we present several examples of algorithmic chemical search, along with flow

platforms that link hardware and digital chemical operations on software. This enables organic syntheses

to be automatically carried out and optimised with as little human intervention as possible. By applying

such enabling technologies to the production of small organic molecules and pharmaceutical

compounds in end-to-end multistep processes, a range of reaction types can be accessed and, thus, the

flexibility of these single, compact flow designs may be revealed. Automated systems can allow several

reactions to take place on the same setup, enabling direct comparison of reactions under different

conditions. Moreover, the production of new and known target compounds can be made faster and

more efficient, the recipes of which can then be stored as digital files. Some of the automating software

has employed machine-powered learning to assist the chemist in developing intelligent algorithms and

artificial intelligence (AI) driven synthetic route planning. This ultimately produces a continuous flow

platform that can design its own viable pathway to a particular molecule and then carry it out on its own,

allowing the chemists, at the same time, to apply their expertise to other pressing challenges in their fields.
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Introduction

Compared to batch processing, chemical synthesis performed
in continuous ow offers the user a versatile and a more
advantageous approach to product manufacturing, as evi-
denced by the signicant attention this enabling technology has
received in recent years.1–6 Such a methodology offers an
enhanced safety perspective by owing material within chan-
nels from stock containers to reactors, thus minimising human
contact. It also opens the door to scalability by intercepting the
ow path with a range of highly adaptive process modules
(reactors, separators, lters and analytics). Thus, sequential,
non-simultaneous reactions can be combined to perform
multistep processes.7–14 Continuous ow gives better repro-
ducibility, smaller time scales due to efficient mixing and heat
and mass transfer, variable ow rates that can accelerate reac-
tion rates through process intensication,7,8,15 and recongu-
ration and reuse of reactors under different conditions. Other
attributes include real-time reaction monitoring, storage of
intermediates, a possible lowering of production costs and an
increase in the quality of the products.16,17

In addition to the benets of ow chemistry, automating
synthesis platforms can assist the human experimenter and
overcome other outstanding issues. For example, typical pub-
lished works in journals and reaction databases are plagued by
human bias that leads the chemist away from performing
certain experiments, while incomplete and ambiguous record-
ings of specic details hinder reproducibility.10 Furthermore,
the huge knowledge banks of chemistry are growing so fast that
there are now millions of reaction combinations and details
that cannot be considered by people. Modern computers, while
heavily underused in chemistry, can overcome such issues by
digitising chemistry in coded formats that can be easily
accessed and operated at the push of a button. The creation and
rapid search of complete molecular chemical spaces from
reaction databases can be streamlined by a machine, which can
then design an optimal synthesis pathway to existing
compounds, and even discover new compounds and novel
chemistries. This will allow the more efficient creation of new
materials, drugs and on-demand synthesis of several chemical
types, which is ideal for pharmaceuticals during a shortage or
for those with short-lifetime intermediates. Standard chemical
processes are designed so that the pathway is separated into
individual and independent steps. Each step involves laborious
processes including workup, purication and characterisation.
These are preferably avoided in automated ow, and reaction
conditions compatible with all steps are carefully chosen.18

On the other hand, most continuous ow setups focus on
core motifs rather than on a specic compound. Extending their
capabilities to automatic and recongurable systems will
require multistep syntheses of complex molecules, involving
several unit operations that do not occur in the same order.
These may demand different residence times, making them
challenging and laborious to design and operate. It is, therefore,
desirable to develop a exible means of running ow syntheses
that enables a comparable or enhanced performance compared
11974 | Chem. Sci., 2020, 11, 11973–11988
to batch processes, with a reduction in reaction times and
manual labour. A system that could predict its own reaction
pathways without the necessity to be physically recongured by
a human operator for each different synthesis is an ideal
candidate. The absence of detailed information in reaction
databases means that in order to digitise chemistry in auto-
mated ow, open-source data that species conditions and
agreed-upon data standardisation metrics are necessary for
future progress.19 The collaboration and advancement of
machine-learning-assisted chemistry will require publications
and datasets to be written in machine-readable formats that are
also contextualised, transparent and traceable.20 Moreover,
information concerning side-products is oen le out and so an
improved prediction of the product distribution is needed,
which can be reviewed as a prediction of the major recorded
(>50% yield) product.19 There is also a bias in the literature
towards reporting only successful reactions. This is a shame
because data about negative and failed reactions can guide the
machine model to understand reactivity trends, mimic patterns
and provide complementary knowledge, even from poor
yielding, a typical reactions. Failed reactions have the potential
to present future research opportunities and have already been
of use in materials chemistry.21 Of course, digitising all the
necessary reaction rules and other required elements is
impractical to do by hand. It is not scalable due to the massive
amount of data out there, not to mention the full substrate
scope and reaction incompatibilities, and that it is currently
dependant on a small number of chemists with computational
experience (something that most chemists have never been
taught).22 Machine learning and AI are, therefore, desirable for
this task.

To that end, several recent efforts by chemists and chemical
engineers have tried to employ digital chemistry to automati-
cally generate and discover new (and known) products with
machine learning in a way that enhances both reproducibility
and productivity, with as little human intervention as
possible.10–14,23,24 In addition, removing the physical barriers to
the organic synthesis will enable processes to be accelerated
and experimental setups to be practically simplied. Acceler-
ated production of lab-scale and commercial-scale quantities of
small molecules to larger compounds such as biopolymers (e.g.
peptides) can be attained by automated processes in safer,
faster and reproducible ways.25 In some cases, different
synthetic routes can be directly compared on the same system
under different conditions.14 Although many automated multi-
step syntheses that have been reported have shown advances in
technology and reduced human intervention, they still rely on
time-consuming manually performed tasks. These include the
design of synthetic routes, system reconguration13 for specic
chemistries and some only perform some types of chemical
reactions.10,26,27 Note that for those who are familiar with
continuous ow but less familiar with the digital side, we have
written this work in a manner that can provide an overview of
some recent developments and breakthroughs in the combi-
nation of chemistry with computer science. We appreciate that
greater learning about some of the concepts may be desirable
aer reading; however, in order not to overcomplicate things or
This journal is © The Royal Society of Chemistry 2020
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to take anything away from the original papers, we remind you
that there are many citations throughout this review for you to
access for a deeper understanding of the key citations.

To date, there has been no universal method of automating
chemical synthesis and, therefore, this should be a goal that we
as chemists should strive towards. The combination of ow
with automation will allow the evolution of chemical laborato-
ries into a faster producing and more efficient future. Step one
will be designing a ow system that is both recongurable and
robust in its pursuit of different multistep chemical synthesis
outcomes. Step two would then be linking the hardware to user-
friendly soware that would not only remotely control the
setup, but also digitally store known optimised recipes that can
be rerun, even by unskilled chemical operators. Finally, the
third step in the pursuit of the lab of the future will be to
upgrade the simple automated platforms with machine-
powered learning and articial intelligence (AI) that can
design its own synthetic routes and carry them out on its own.

Digitising continuous flow chemistry

An emerging virtual tool to assist synthetic chemists in nding
better pathways is to combine chemically relevant hardware
with soware that executes computer-aided synthesis planning
(CASP): digitised chemical knowledge in the form of an
executable program.19 Originally used to predict routes before
they were carried out in practice, CASP is envisioned to accel-
erate processes and to be combined with robotic platforms for
faster experimental testing and de novo synthesis.28 A decent
program would be one that inputs a chemical structure and
outputs a detailed list of plausible reaction pathways to the
target from commercially available materials. Notwithstanding
nearly 60 years of research efforts, however, CASP has not yet
been widely accepted.28 This may be because of pessimism
regarding limitations when it is applied to complex molecules
(i.e. natural products) and intricacies of process and medicinal
chemistry.19 There is also criticism of digitally extracting
chemical information from databases (published journals) due
to high noise and lack of raw data/“chemical intelligence”, the
cost of computationally expensive templates, or that it does not
scale to the ever-growing knowledge banks.28–31 Nevertheless,
a study by Adamo et al. combines the formulation of the nal
product with multiple complex syntheses, purications and in-
system reaction monitoring in a digitally controlled, recong-
urable continuous ow platform.11 Attention was focused on
aqueous or alcohol-based concentrated formulations that could
be stored and remain stable for one month. The use of solid
formulations (i.e. tablets) was beyond the scope of their work
since modules to perform drying, powder transport, blending
and tableting operations would require much more additional
space. Their recongurable system, the size of a refrigerator,
consisted of an upstream unit containing stocks, pumps,
pressure regulators, reactors and separators, and a downstream
unit for precipitation, crystallisation and formulation (Fig. 1).
Real-time monitoring could occur through a FlowIR. Hardware
was then expanded to include ow rate, pressure and temper-
ature sensors so that LabVIEW programs and the modular X
This journal is © The Royal Society of Chemistry 2020
Series data acquisition (DAQ) device could be employed to
implement syntheses and for automation. Four pharmaceutical
products with different molecular structures were produced in
hundreds to thousands of oral or topical liquid doses per day.
These were diphenhydramine hydrochloride, also known as
Nytol (UK) or Benadryl (USA), lidocaine hydrochloride, diaz-
epam (Valium) and uoxetine hydrochloride (Prozac or Sar-
efem). They were obtained in good yields of 82, 90, 94 and 43%,
respectively, in production times ranging from 12.2 to 44.7 h
(the bulk of which was dominated by downstream precipitation
steps). As a comparison of time between this ow approach and
a conventional batch process, diphenhydramine hydrochloride
was complete within 15 min (a batch process in contrast would
require over 5 h),32 lidocaine hydrochloride took 36min (a batch
process takes 60 min of reuxing in toluene33 to 4–5 h in
benzene)34 and diazepam in 13 min (compared to 24 h for
a batch process).35 The advantage of this system is contingent
on the production of pharmaceutical compounds still being
heavily reliant on batch synthesis, usually taking about 12
months to complete, with multiple fragments being made at
different locations to construct the active pharmaceutical
ingredient (API), which is nalised at a different plant.11 This
may result in long production times, possible supply chain
disruptions, variations in quality control and drug shortages
due to a limited number of venders (particularly when there is
an increase in demand, e.g. during an epidemic or pandemic). It
would bemuchmore desirable to formulate high-quality APIs in
a more exible and robust manner, such as through the use of
continuous ow.17,36

The next logical step to accompany the inherent advantages
of continuous ow (efficient mixing, heat and mass transfer,
etc.) is the development and incorporation of in-line analytical
techniques, such as IR, NMR and MS.37 Spectral responses will,
therefore, enable real-time data acquisition in synergy with
continuous ow attributes: e.g., high-speed monitoring of large
amounts of reaction progression data, precise control over
experimental parameters and hence the nal outcome. In
addition, novel discoveries and new advances can be attained in
a more timely manner. The Jensen and Jamison group have
built an automated and recongurable continuous ow plat-
form, with the intention of optimising above-the-arrow condi-
tions for a broad scope of reaction types.12 This can help
enhance yields and selectivities and reduce labour times by
constantly receiving feedback from online analytics (IR, MS,
Raman and HPLC). Optimal conditions can then be transferred
to another lab and repeated with high delity. Control of
reagents, hardware modules and analytics can be performed in
user-friendly MATLAB and LabVIEW soware and, thus, will
allow remote progress monitoring. Their system is also
compatible with optimisation algorithms, e.g. exibility and
generality can be provided by the stable noisy optimisation by
a branch and t (SNOBFIT)38 algorithm. Once an optimisation is
discovered, it can be stored and reused by others in down-
loadable electronic les. As shown in Fig. 2, the setup contains
several types of plug-in reactors, a liquid–liquid separation
membrane, sensors and analytics. With thousands of possible
reactor module congurations, the system provides good
Chem. Sci., 2020, 11, 11973–11988 | 11975
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Fig. 1 Refrigerator-sized, reconfigurable flow system for fabricating APIs with upstream synthesis modules and downstream purification and
formulation modules shown. Reproduced from ref. 11.
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sorting aer generality and ease of use that can realise opti-
misations and evaluations within hours or days. This is also
ideal for easy reaction comparisons. Its competency was then
examined by generating over 50 compounds from seven
chemical transformation types, with good to excellent yields
and practical ow rates. These were the Buchwald–Hartwig
amination (72–99% yield), Horner–Wadsworth–Emmons ole-
nation (67–97%), reductive amination (67–97%), Suzuki–
Miyaura cross-coupling (88–99%), a nucleophilic aromatic
substitution (88–99%), photoredox catalysis (73–93%), and
a ketene generation (47–90%).

These two ow platforms above are both recongurable, but
in different ways, i.e. the rst is recongured in silico, allowing
the user to change the ow route within the system, while the
plug-and-play approach involves the physical removal and
insertion of reactor modules. The latter has the added merit of
incorporating analytics in the ow path, enabling faster analysis
and, hence, optimisation compared to the former which spends
a lot of time on precipitation and crystallisation before product
identication. Both of them also operate in a linear fashion in
the same way that humans perform batch reactions, one aer
the other. But is this the optimal way to perform ow chemistry?
Chatterjee et al. have argued against this typical method by
designing a radial synthesiser that can run single or multiple
reactions in both linear (conventional) and convergent
11976 | Chem. Sci., 2020, 11, 11973–11988
strategies (Fig. 3), with automatic reconguration.14 This is
motivated by constraints in mass ow that dictate that the ow
of the input reagents must equal the output ow. This can be
affected by temperature, reactor volume and type, and so
a specic sequence of modules and conditions is required for
each synthesis. For a ow system to be competitive, it must
therefore be recongurable and have different reactors that can
comply with a range of optimal syntheses. The system is
comprised of a central hub that uses a 16-way valve to direct
reagent ow to surrounding storage and stock containers,
reactors and in-line analytics; intermediates can be stored so
that they may join together at a later phase. This allows reac-
tions to be performed under their individual optimum condi-
tions and in silico use and reuse of reaction modules. Using
LabVIEW, soware is remotely controlled by inputting the
necessary reaction details into the graphical interface contain-
ing a series of virtual instruments that link and control the
hardware and soware (timed to allow for full automation).

To compare this radial approach with a typical linear
method, the authors applied the system to the optimisation of
the multistep synthesis of the anticonvulsant drug, runamide
(Scheme 1). Monitored by FlowIR, the azide and amide inter-
mediates were independently synthesised before the
concluding copper-catalysed cycloaddition was optimised,
affording the target molecule in 70% yield (88%NMR yield).14 In
This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Plug-and-play continuous-flow setup illustrating its operation via a general four-step protocol, schematic diagrams of the overall
arrangement with interchangeable process modules, and a CAD (computer-aided design) LED reactor. Reproduced from ref. 12.

Fig. 3 Pictorial examples of three different approaches to organic synthesis in flow. The advantages of the linear and cyclic approaches are
combined to give the radial approachwhich has a central switching station surrounded by processmodules for maximum versatility withminimal
equipment. Reproduced from ref. 14.

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 11973–11988 | 11977
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Scheme 1 Radial (blue) and linear (green) synthetic routes of rufinamide.
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conjunction, the linear method afforded runamide in 45%
yield (83% NMR yield) using near identical conditions. The
exception was the concentrations of the two (blue) starting
materials which were diluted from 1.5 to 1.0 M because the
triazole intermediate (green) was found to be insoluble at the
original concentration.14 Thus, less concentrated solutions
(which may also explain the lower yield due to the lower nal
concentration) and due to the addition of water, resulted in
a more complex purication. This study is noteworthy because
it shows the decoupling of reaction steps by automatically
directing effluent lines to the appropriate reactor or storage
facility; therefore, reactions are independent of one another,
thus removing mass ow constraints. Furthermore, this one
system can be used for different target molecules and its ability
to recongure itself can reduce development times.

On a slight tangent and in addition to machine learning and
analytics, reactor equipment can be exchanged to suit a given
synthesis or even printed for integration into a ow platform.
Cronin et al. sealed 3D print polypropylene reactionware that
could be used as part of a digital synthesis platform.39 This was
constructed via a chemical to computer-automated design
(ChemCAD) approach, and, henceforth, allows the user to load
chemicals in a simple manner for benchtop-scale reactions.
Multiple components were printed to conduct small-scale
productions of three drug molecules: namely baclofen, zolimi-
dine and lamotrigine. The objective here is to digitise the
chemical manufacturing of nemolecules and pharmaceuticals
in a cheap and reproducible (standardised) way. The authors
describe the process as a “platform-independent digital code”
which would be useful for non-chemists (medical professionals
and biologists) to print and recreate the synthesis, simply by
following a given set of instructions. Compounds that are
needed then and there or that have short shelf lives are ideal
candidates for this. Their particular design is for existing
compounds and each different compound requires a different
3D printed module. For example, the baclofen reactor, which
consists of two liquid–liquid separators, a set of evaporations
and ltrations for three reactions, would not be suitable for
11978 | Chem. Sci., 2020, 11, 11973–11988
lamotrigine. It should be noted that the efficiencies of the
polypropylene reactors were slightly lower than those of the
glass reactors, attributed to lower product recovery owing to the
higher degree of surface roughness of the polypropylene
surface. Moreover, the efficiency of the zolimidine (copper-
catalysed iodination) reaction was signicantly lower than
those of the other two drugs, likely due to unwanted side
reactions of iodine with the polypropylene.

While the aforementioned strategies combine hardware with
simple soware, computers are used mainly to perform and
analyse the chemicals produced from a small number of reac-
tions. On the other hand, machine learning and AI have been
accepted to manage and analyse big data, while ow chemistry,
despite its advances, is yet to fully accept high-throughput
reaction screening with multiple continuous (temperature,
pressure, residence time, etc.) and discrete (catalyst, ligand
base, etc.) variables.40 Therefore, leading on from recongurable
ow systems and in-line analytics, the data can then be digitally
analysed by intelligent algorithms and autonomously used to
create a chemical space that will allow fast optimisation and
give the opportunity for a dial-a-molecule request. Techniques
that study the effect of multiple parameters such as “Design of
Experiments” (DoE) are also useful to place in tandem with ow
and automation. Digitising chemical objectives in this way will
minimise human intervention, as the synthesis platform will be
controlled by an algorithm making decisions based on the
user's desires (yield, time, selectivity etc.)

The use of high-throughput experimentation (HTE) is
becoming increasingly more desirable since it can signicantly
accelerate the exploration of chemical space and be performed
by increasingly available off-the-shelf robotics.41 HTE is partic-
ularly renowned for being able to practically perform thousands
of different nanomole-scale reactions on a daily basis, using an
appropriate search algorithm that has dened the scheduled
chemical space experiments by certain merits: i.e. time, cost
and resources.41 Moreover, HTE is ideal to provide AI and other
models with large amounts of information and has already
proven itself useful in scale-up optimisations of known
This journal is © The Royal Society of Chemistry 2020
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compounds as well as the discovery of new reactions.42–47 HTE
can be coupled with advanced analysis techniques to decrease
the analysis time, e.g. matrix-assisted laser desorption
ionisation-time-of-ight spectrometry (MALDI-TOF), which has
can handled thousands of experiments in minutes.48 Scientists
at Merck have developed a nanomole-scale synthesis platform
to successfully optimise Pd-catalysed Buchwald–Hartwig C–O,
C–N and C–C cross-couplings in dimethyl sulfoxide (DMSO) at
room temperature.47 Automated reactions were optimised using
robotics from biotechnology andmass spectrometry (MS)-based
high-throughput analysis, producing drug-like fragments by
iterative reaction screening in 1.0 ml volumes. 1536 reactions
could be evaluated in 2.5 h using only 0.02 mg of starting
material per reaction. Later, this was extended to include the
affinity of a compound to a target protein (called NanoSAR) that
allows for in situ analysis of structure–activity relationships.49

Off-the-shelf robots are becoming more and more common-
place and so Merck has provided a good example of how
chemistry can be devised for the robot's capabilities. This work
does, however, suffer from limitations, such as the need for
non-volatile solvents (e.g. DMSO), low-resolution MS and no
heating to prevent solvent evaporation. In contrast, Perera et al.
have used in-line high resolution liquid chromatography-MS for
real-time analysis of a ow system that deals with nanomole to
micromole solutions.40 This makes it ideal for automated bio-
logical testing. The team demonstrated the capabilities with
high-throughput reaction screening of Suzuki–Miyaura
coupling reactions under a range of variables (volatile and non-
volatile solvents, temperature, pressure, residence time, cata-
lyst, ligand and base) that totalled 5760 reactions. Only
�0.05 mg of substrate per reaction was required, enabling
>1500 reactions to be screened per 24 h. Scaling up the HTE
capacity for more useful material quantities was demonstrated
by injecting 100 consecutive segments to produce 10–100 mg of
a specic compound per hour whilst preventing cross-
contamination between segments.

Doyle et al. have also predicted the yield of Pd-catalysed
Buchwald–Hartwig C–N cross-coupling products using
a random forest algorithm that calculated the multidimen-
sional chemical space via HTE from 4608 reactions.50 Compo-
nents of the Buchwald–Hartwig amination, i.e. atomic,
molecular and vibrational descriptors, were generated by the
random forest model which increased the yield prediction
efficiency to a degree that outperformed other linear regression
analysis. The reaction descriptors and yields were then used as
inputs and outputs, respectively. The overall prediction is
generated by a random forest (a nonlinear approach) con-
structing decision trees from random data samples. As the
number of data points increases, the model is updated and
chemical space can be navigated better. Similarly, Doyle and co-
workers also used the random forest algorithm to accelerate the
yield prediction and identication of optimal conditions for the
deoxyuorination of a range or alcohols using sulfonyl
chlorides.51

Nowadays, however, large reaction databases (USPTO,
Reaxys, SciFinder) are available to train CASP approaches for
integration with machine learning. This can streamline the
This journal is © The Royal Society of Chemistry 2020
search for known molecule syntheses and help to create and
corroborate new synthesis planning methods. Two retro-
synthetic examples that have emerged are Chematica,52,53

a program which uses rule-based code, and the Monte Carlo
tree search algorithm employed by Segler et al.28

Creating a library of retrosynthetic templates by hand-coding
reaction rules has been attempted in the past, but has been
plagued by a user-unfriendly syntax and incomplete data-
bases.19 However, with adequate investment in time and labour,
beginning in 2001 a program called Chematica (commercial-
ised as Synthia) has been able to gather a network of �50 000
hand-coded rules which, for validation, were sufficient to
experimentally improve the yields, time and cost of several
medically relevant compounds.53 It works via an algorithm tree
search (Fig. 4) coupled to undisclosed AI heuristics, allowing
Chematica to discover new pathways, have lists of functional
groups that are incompatible for each template and possess
a user-friendly graphical interface. As a guide, tree-based
heuristics are advantageous as they allow design exibility
mimicking chemical intuition, favour synthetic routes that can
be allocated with the knowledge of other alternatives and
increase the efficiency of navigating through chemical space.
The tree is attuned to terminate its braches at commercial
reactants, can penalise pathways that involve strained inter-
mediates or practically infeasible structures and non-selective
reactions, and can store and reuse routes as part of another
strategy if one of its products is required. This saves the need for
further search expansion. Due to its reliance on digitising the
rules by hand, the growth of this program is hampered by the
increasing volume of literature.

In contrast to this hand-coding approach for Chematica,
Segler et al. described a neural network, guided by a heuristic
best rst search (BFS), for retrosynthesis prediction that used
reactant ngerprints to rank 8720 extracted reaction templates
whilst avoiding reactivity conicts.54 These came from 3.5
million reactions from the Reaxys database with up to 78%
accuracy. This was then extended to a Monte Carlo tree search
and symbolic AI approach, trained on every published organic
reaction (12.4 million), to predict full retrosynthetic routes.28

Their algorithm used reactant ngerprints from the reactions to
create reaction templates; rules that occurred more than 50
times in the database were considered, totalling 17 134 and
301 671 for 52% and 79% of all single-step reactions, respec-
tively. It also acted as an “in-scope lter” to remove poor-quality
suggestions, e.g. not practically feasible or too long and
complex, with excellent speed (30 times faster while solving for
twice as many molecules compared to the traditional computer-
aided search method based on extracted rules and hand-
designed heuristics).28 Moreover, for testing, 100 million nega-
tive reactions were generated. For verication, expert chemists
underwent double-blind A/B testing which revealed that the
quality of the digitised AI routes was equivalent to those of
a human. This work is commendable because of the high level
of efficiency, accuracy and sophistication that is both faster and
comparable to a human, has the ability to minimise the number
of reaction steps and has employed such a large number of
published experimental examples which previous works have
Chem. Sci., 2020, 11, 11973–11988 | 11979
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Fig. 4 Complex tree-search network in Chematica. Nodes can be displayed as 2D or 3D molecular structures (for basic modelling calculations)
and can be expanded down the retrosynthetic path. Blue nodes denote products; green are minor/side-products, red are commercially available
substances, and yellow halos denote regulated substances. Reproduced from ref. 53.
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not done due to the complexity and nature of only publishing
successful reactions. These retrosynthetic strategies, however,
do not determine the feasibility of the forward reaction, directly
provide reaction conditions, or have their code open-source/
model available for comparison (negatively impacting repro-
ducibility and progress), and their reliance on manual labour
hinders scalability and standardisation.

From another angle, a similarity-based approach to auto-
mated retrosynthesis has been suggested by Coley and Jensen
et al. whereby the similarity between product and reactant is
used to identify the forward strategy.55 This system works by
mimicking how a chemist would think about synthesising
a compound. It is based on previously reported syntheses
(40 000 reactions from Reaxys or SciFinder) from similar motifs
of other compounds and then determines whether the sug-
gested routes are appropriate. The similarity between the target
and reactants is calculated and used to quantify and rank the
proposed reaction. Here, a highly generalised template is
produced, but like most other template-based works, e.g. that of
Segler et al., the templates only consist of the bare minimum of
chemically relevant information (only the atoms involved in the
immediate reaction).28 This eliminates the need to dene
heuristics for their extraction, to code conicts in reactivity by
hand, and since the template is not as extensive as usual, the
computational speed is not as impeded. Out of 5000 test reac-
tions, proposed reactions within a specic reaction class were
successful 52.9% of the time. When 5 and 10 disconnections
were suggested, the success rate increased to 81.2% and 88.1%,
respectively. While this study cannot be directly compared to
Segler et al.'s because their open-source code is not available, it
can be compared to the template-free seq2seq model reported
by Liu et al.56 The similarity approach exceeds the seq2seq
model (81.2% compared to 57% for top-5 accuracy) and can be
applied to more complex pathways (i.e. to drug compounds).55
11980 | Chem. Sci., 2020, 11, 11973–11988
This method is, however, simplistic in the sense that it does not
include information about conditions such as temperature,
catalysts, reagents or solvents. Also, the routes do not consider
other experimental merits like yield, cost, safety, workup etc.
nor do they suggest any major benets over a human chemist's
knowledge of the reaction types in question. Moreover, this
similarity search is not AI and does not account for stereo-
chemistry, unlike the Chematica tree search or Segler et al.'s
Monte Carlo tree search algorithms.57 Compared to Chematica,
the speed and amount of data used are similar; however,
Chematica has much more experimental validation. Segler
et al.'s Monte Carlo tree search uses a lot more data and is much
faster than the other two, but has much less experimental
validation than Chematica (and is more similar to the similarity
search in this respect). Furthermore, Chematica and the Monte
Carlo tree search are very competitive with humans, whereas
this aspect is not really known for the similarity search.57

Moving on from this and to gain a better insight into true
chemical intuition and to overcome some of the aws of
previous strategies, Coley at al. compiled a reaction database of
15 000 US patented reactions with plausible but negative reac-
tion examples.22 Given a certain set of reactants, a neural
network model is trained to predict the major product of the
reaction and in doing so learns the probability of producing
a compound based on certain modes of reactivity. The pool of
potential products is overgeneralised to increase product
coverage rather than specicity. The machine learning operates
in a two-step manner (Fig. 5a); the rst step is to produce
a library of forward reaction templates to dene chemically
plausible products. In addition, since a large number of
potential products could be formed by a template, a lter is put
on that excludes any reaction that proceeds at a rate that is
insignicant compared to others. This overcomes the
constraint of only considering high-yielding data and allows
This journal is © The Royal Society of Chemistry 2020
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Fig. 5 Two approaches to predicting outcomes of organic reactions. (a) Model framework combining template-based enumeration and neural
network-based candidate ranking. (b) A graph convolutional neural network, where reactants are represented as a graph, learns to calculate
likelihood reactivity scores of each bond change between each atom pair for focused enumeration of possible products, which are then filtered
by certain rules and ranked. Reproduced from ref. 19 and 22.
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more information to be extracted from the other plausible
reactions.22 Secondly, a 5-fold cross-validation of each reaction
candidate selects and assigns the major (recorded) product as
“true” and ranks it as rank 1 in 71.8%, rank #3 in 86.7%, and
rank #5 in 90.8% of cases. The “false” products are the gener-
ated plausible alternative products. Product likelihood scores
could then be mapped and compared as a distribution of
probabilities in a somax network layer. The most abundant
products can then be predicted in a way that focuses on the
fundamental reactant-to-product transformation instead of
molecular ngerprints. Therefore, when implemented, an
accuracy of 72% exhibited for the top-ranked products suggests
that the method has realistic practicality, because one product
can be determined out of a variety of competing reactions in the
glassware.

Later, this work was extended to include solvent information
and atom-mapped molecular graphs were constructed from
changes in bond order from the reactant pool.58 This model saw
an improvement in interpretability and performance, and
provided a way to understand reactivity by viewing molecular
structures in terms of bonds being formed/broken. Likely
reaction sites are identied, then products are enumerated
(rather than digitising the molecule's functional groups to code)
and ranked. The graphs (Fig. 5b) have edges corresponding to
bonds and nodes as atoms. From here, structural information
(e.g. aromaticity, atomic number, degree of connectivity) and
geometrical and electronic features (e.g. surface area contribu-
tion, charge) are observed. This time the major product was
This journal is © The Royal Society of Chemistry 2020
correctly predicted from reactivity in over 85% of cases, notably
higher than previous machine learning attempts, with only 100
ms of calculations required per example. The model is designed
to mimic the rationale of a human chemist and was found to be
competitive with a group of human chemists. Drawbacks of this
approach include the sample size limiting the statistical power
and templates limiting scalability (outside of which predictions
cannot be made). Nevertheless, a broad range of reaction types
can be studied using a knowledge bankmuch larger than that of
a person, and a mixture of products (not just the major ones)
can be catalogued, which is ideal for impurity identication and
quantication.

Coley et al. have also developed an open source soware
framework (they call ASKCOS) for CASP to integrate a robotically
recongurable ow apparatus with an AI-driven retrosynthesis
prediction algorithm.13 Using protocols they have previously
developed,22,58 mentioned above, a library of 163 723 rules were
algorithmically extracted from 12.5 million published single-
step reactions from Reaxys. To reduce the probability of
proposals that would be unfeasible in practice, the program
incorporated RDKit and RDChiral to perform reactions and to
make sure they occurred in a consistent manner when dealing
with stereochemistry.59 Forward reaction templates were then
assessed by examples of around 15 million published positive
reactions and 115 million articial negative reactions, via
a binary classier based on Segler et al.'s “in-scope lter” which
removes low-quality suggestions.13,28 Aer this, a forward
predictor model36,60 would predict the generated product and
Chem. Sci., 2020, 11, 11973–11988 | 11981
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side products. A neutral network model would be used to
provide reaction conditions to reach a specic target, i.e.
solvents, temperature, catalysts and reagents.61 Finally, plau-
sible templates were combined as chemical recipe les (CRFs)
that act as the intermediate between the robotic ow platform
and the soware.13 The CRFs contain practical information,
such as the location of stock solutions, their paths and ow
rates throughout the system and the sequence of modular
process units that are to be moved to and from the platform and
the storage stack for a particular synthesis. The physical system,
shown in Fig. 6, consists of a robotic arm which connects plug-
in ow reactors, membrane separators and reagent lines on
a uidic switchboard with computer-controlled pumps. Selector
values can choose up to 24 stock solutions, including a cleaning
solvent which ushes the system. As a means of demonstrating
the utility of this system, 15 medically relevant small drug-like
molecules were synthesised in good yields.13

The robotic arm is an interesting approach, different from
the aforementioned in silico recongurable ow setups (Fig. 1
and 3), and driven by amore advanced algorithm that allows the
robot to design and carry out its own reactions once an operator
has told it what the desired product is while it shares some
similarities with the plug-and-play system where modules are
physically moved in and out of the ow path, the robotic arm
acts as a sort of mini-chemist operating its own little chemical
platform. What if, however, this idea could be taken one step
further to a real laboratory-sized robot arm that could work ‘at
the same time as’ humans? This question could also be
extended to ‘instead of’ humans. Normally this would seem like
Fig. 6 Photograph of a robotically controlled, reconfigurable continu
ventilated enclosure (green) and multistep synthesis route planning thou

11982 | Chem. Sci., 2020, 11, 11973–11988
an odd question; however, at the time of writing (during the
global COVID-19 pandemic) many scientists have been stopped
from physically entering the lab. A unique study from the
University of Liverpool has employed a mobile robotic chemist
(Fig. 7), driven by a Bayesian optimisation algorithm, to assist
and mimic the researcher.62 Its human-like dimensions and
compliance with safety standards for collaborative robots make
it suitable to work alongside humans in a typical laboratory.
Movement is guided by touch feedback and laser scanning,
imparting the ability to both work in the dark (good for light-
sensitive reactions) and giving it a high positioning and orien-
tational precision to perform dexterous human manipulations
(e.g. instrument operation, handling sample vials, etc.)
Excluding the time the robot needs to charge, with optimal
scheduling it can operate for up to 21.6 h a day performing
experiments 1000 times faster than a human. Cooper et al.'s
research objective was to use the robot to search for bio-derived
hole scavengers to accompany the conjugate polymer photo-
catalyst P10, during the water splitting reaction to produce
hydrogen under light.62 The experiment begins with the robot
loading solid components onto a solid-dispensing station to be
weighed into vials, which are then transported to a liquid-
dispensing station, 16 vials at a time. It loads the vials onto
a capping station to be capped under nitrogen or sonication,
then delivers them to a photolysis station to be irradiated, and
subsequently transferred to a gas chromatography station for
H2 analysis and nally stores the nished vials. Automatic
operation went on for 8 days in this case, searching a ten-
variable experimental space in 688 experiments.
ous flow system showing a 6 � 4 ft working table floorplan (grey),
ght process assisted by AI. Reproduced from ref. 13.

This journal is © The Royal Society of Chemistry 2020
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Fig. 7 Photographs of the mobile robotic chemist performing a six-point calibration with respect to the black location cube attached to the
bench, the unmodified lab space (and its map) used for the autonomous experiments, and the multipurpose gripper shown with and without it
griping a capped sample vial. Reproduced from ref. 62.
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L-Cysteine displayed good performance as a hole scavenger
with P10; however, it was still lower than its petrochemical
TEAO competitor. Next, the authors came up with ve hypoth-
eses to increase the performance, which the robot tested
simultaneously. These amounted to a search space of over 98
million points and so, guided by the Bayesian algorithm, the
robot started with random conditions and was eventually able
to make its own decisions on what was and what was not
important. In doing so the machine identied a number of
scientic conclusions, such as increasing the pH and ionic
strength are favourable for H2 generation, with the former being
more profound (and also increases ionic strength). Moreover,
mixtures that were 6 times more active than the original catalyst
were found by choosing or rejecting components. These ve
hypotheses would have taken several months for a human to
study. For 1000 such experiments, with 1/2 a day spent on
researcher time per experiment, it would take a human 500
days. This is in contrast to the robot chemist which could
perform 1000 experiments in 10 days, ve of which are dedi-
cated researcher time. Aer initial setup which took 1/2 a day,
the machine ran autonomously over multiple days; therefore, 1/
2 a day of researcher time for 1000 experiments, making this
method 1000� faster than manual and >10� faster than other
non-autonomous robotic follow systems.62 It took around two
years to build this system at rst, but once working with a low
error rate it can be used as a useful tool (particularly during
a lockdown scenario) and can be introduced into a new lab
much more quickly and be extended to use other instruments
(e.g.NMR). It is also advantageous when dealing with dangerous
material, or for intricate pharmaceutical processes and can be
extended to territories other than chemistry, such as material
science. It should also be made clear that this is an enabling
This journal is © The Royal Society of Chemistry 2020
technology, not a replacement for the scientist: for example, the
robot did not generate its own hypotheses and there is currently
no computational brain.

Going back to the linear ow platform design and address-
ing the incomplete way in which chemical syntheses are re-
ported, Cronin and co-workers developed what they call
a “Chemputer” – a universal chemical programing language
that operates an automated synthesis.10,63 The physical opera-
tions that control an automated batch synthesis platform are
bridged with an organic synthesis abstraction that embodies
reaction, workup, isolation and purication; the four stages of
synthetic protocols (Fig. 8). While the layout of this physical
setup is inferior to the aforementioned linear and radial
approaches, the predominant area of interest for this group was
in the soware design and control of retrosynthetic strategies.
The design began with the development of a digital ow system
that relied on sensor feedback from changes in IR spectra to
navigate a closed-loop chemical space search, based on reac-
tivity rather than on conventional synthetic rules (i.e. not just
following yield).64 In short, their algorithm was attuned auto-
matically to select the most reactive pathways (based on
previous experiments) within a network of 64 possible reaction
combinations, without having to do every experiment. This was
done in real time, many reactions could be linked together, and
prior chemical knowledge or work-up and purication steps
were not required. A simple metric then ranked the reactivity of
all reactant combinations, resulting in the discovery of new
molecules with only a fraction of the reactions needing to be
performed. In this case, only 19% of all possible reactions
needed to be explored. Furthermore, the screening time and
material could be signicantly reduced in each subsequent
reaction step. This work was extended to include the use of
Chem. Sci., 2020, 11, 11973–11988 | 11983
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Fig. 8 Schematic representation of the Chemputer with four unit operations attached to the fluidic backbone. Reproduced from ref. 10.
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more in-line analytics (NMR, MS and IR) and to predict the
reactivity of 1000 reaction combinations, achieving over 80%
accuracy with only �10% of the dataset being conducted in
practice (the rest being predicted).65 It should be noted that this
chemically unbiased methodology led to the discovery of four
new reactions. To begin with, reaction mixtures were deemed
either reactive or non-reactive and then digitised by a binary
number (0 or 1) using a support vector machine. Secondly,
a reaction descriptor was created with the number of starting
materials dening its width and with a bit string representing
the presence (1) or absence (0) of a chemical. This allowed the
machine to make decisions that were assessed in real time via
a comparison of theoretical and experimental spectra. This
database was then coupled to a linear description analysis
model which could assign a probability of reactivity and
construct a chemical space architecture. The highest probability
reactions are then conduced and analysed autonomously,
enabling non-reactive mixtures to be avoided and the process-
ing time to be decreased. This data would then update the
machine learningmodel and close the loop. For exploration, the
Suzuki–Miyaura reaction was investigated by the algorithm
randomly choosing 10% of the possible reactions to train the
neural network. The highest predicted yield reactions were then
carried out and the rest were rated by the machine model in
batches of 100. The initial random guess produced a mean yield
of 39% with a standard deviation (SD) of 27%; the rst batch
then had a mean yield of 85% with an SD of 14%, and then
subsequent batches rely on progressively fewer starting mate-
rials until the non-reactive parts of the chemical space are
reached.

For clarity, these efforts allowed an autonomous system
combining a robotic platformwith AI, to make its own decisions
based on previous experiments. This could then give way to the
11984 | Chem. Sci., 2020, 11, 11973–11988
beating heart of the Chemputer, a program that produces the
low-level, specic code instructions that command the hard-
ware to operate a written synthesis, namely the “Chempiler”.10,63

In correlation with the above works of Coley and Jenson (Fig. 5)
the platform and abstraction are represented as a graph,19,58

making it possible to digitise and run published syntheses,
assuming the required process modules are present within the
setup, without manual conguration. The workow, shown in
Fig. 9, automatically generates and optimises a valid synthesis
that can be executed by a continuous ow platform. As a proof-
of-concept, three pharmaceuticals were automatically produced
in yields and purities comparable to manual synthesis. These
were: diphenhydramine hydrochloride, 58% yield over four
steps in 77 h vs. 68% yield manually in 4 days, sildenal (Via-
gra), 44% yield in 102 h, and runamide, 46% yield in 38 h vs.
38% manually. In this case however, for simplicity and repro-
ducibility, the ow setup consisted of batch glassware (since
this is most commonly found in today's laboratories) rather
than ow reactors. Naturally, synthetic routes will have to be
digitised and validated one by one, but eventually databases will
be created that will allow automated platforms to directly
convert a reaction from the database to a code and/or run
known operations from an electronic le.

With all these advances in mind, an automated synthesis
platform, “AutoSyn CityScape”, which emulates a miniaturised
chemical plant, has been designed to produce milligram-to-
gram quantities of small organic molecules.18 The congura-
tion, shown in Fig. 10, resembles a city's high-rise landscape,
with a subway map of ow components that can be operated
withminimal intervention by a single-user. This is similar to the
ow pattern of Chatterjee et al.'s radial synthesiser14 that is
guided through uid circuits and can choose when and which
modules to go to. Digitised chemical processes then guide the
This journal is © The Royal Society of Chemistry 2020
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Fig. 9 Operating codes for the Chemputer. (A) Schematic illustration of an organic synthesis where reagents are treated as inputs and the final
product as an output. (B) Chemputer architecture outline (ALU ¼ arithmetic logic unit; I/O ¼ input/output; ASM ¼ assembly language). (C)
Abstraction of chemical synthesis able to be universally programmed using a machine. Reagents and products are represented by a memory bus
that splits a complex pathway into steps or cycles that can be accessed by the hardware. Reproduced from ref. 10.
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platform to select suitable ow paths between various reaction
modules and in-line analytics. In this work there are 3887
possible routes that can be taken. Multistep syntheses can,
therefore, be combined to generate a wide variety of target
compounds. These digital procedures enable reproducibility
and the ability to transfer to and from different labs. The main
merit of the system was demonstrated by its versatility,
producing 10 known drugs in a range of yields (6–100%),
purities (17–91%) and lengths of time (0.75–3.25 h). The
synthesis planning is conducted in a three-level process. Level 1
has to do with the manual or algorithmic design of a synthesis
route, including relevant solvents, reagents and conditions.
Level 2 automatically converts level 1 into a ow process with
operating parameters that correspond to the available hard-
ware. Here, reagent and solvent compatibility with the
machinery are taken into account as well as possible side
products. Level 3 then converts the level-2 process map into the
hardware “subway map” that runs the digital synthesis as
computer scripts. The exibility of AutoSyn was chosen as the
predominant attribute (rather than yield or full optimisation),
demonstrating a step closer towards a “universal synthesiser”.18

Further optimisations of the synthesis procedures will in the
future help increase yields and efficiency. For example, levels 1
and 2 are similar to the processes of Chematica and Cronin,
respectively;10,52,53,63 however, benet would be revealed by
introducing machine learning techniques incorporating the
This journal is © The Royal Society of Chemistry 2020
huge number of reactions stored in databases as in the works of
Segler et al.28 and Coley and Jenson et al.22,55,58 Moreover,
AutoSyn is designed to produce products in usable quantities
(mg to g) which is a necessity for large, complicated (but well-
known) multistep syntheses, i.e. this will be hugely benecial
for making useful quantities of peptides and DNA sequences.

There are, however, challenges that are standing in the way
of automated synthesis progression and its widescale adoption.
While some methods can address stereochemistry, not all of
them can and, thus, reliable predictions are going to depend on
this becoming commonplace.28 Concurrently, quantitative
evaluation of enantiomeric or diastereomeric ratios remains
a problem, and relies on expensive quantum mechanical
calculations.28,53,66 It may be possible to get around this with
stereochemistry-aware descriptors.28 Complex natural products,
with their elaborate pathways and unpredictability, are trou-
blesome even for expert chemists and are still beyond the
capabilities of most digitised ow platforms. Also, many
prediction algorithms exclude or struggle to complete feasible
reaction conditions. When creating a forward predictor model,
there is the question of what denes a good reaction pathway.
This will differ for different areas of science: organic chemists
might want yield or stereospecicity, medical professionals
could be time conscious (e.g. on-demand pharmaceuticals
during a shortage or for convenience), industrialists may value
the cost of the chemicals and equipment, or safety may be the
Chem. Sci., 2020, 11, 11973–11988 | 11985
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Fig. 10 AutoSyn CityScape comprising a flow chemistry platform, a reagent delivery system, and process analytical technologies controlled by
integrated software. A number of chemical syntheses can be carried out, such as the pharmaceutical targets listed with their corresponding
highlighted “subway map” of the routes through the platform and their unit operation modules. Reproduced from ref. 18.
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main concern. User-friendly soware with a “lter” option
would be a good idea. Retrosynthetic algorithms work by
simplifying a target molecule into smaller components, but do
not consider the judicious approach of employing protecting or
directing groups, since this would mean increasing the size of
the intermediate compounds. In addition, the algorithms
should account for the availability of reagents since suitable
precursors can streamline routes to complex molecules.28,53

Finally, there is the physiological aspect of removing the scep-
ticism chemists may have of this new technology. While well
established in other disciplines, practical chemists may doubt
current machine learning's ability to grasp the “art” of organic
chemistry.67 Others may be under the belief that robots will
replace them and so will need to be shown that automation is
actually an enabling tool to assist them in a very effective
manner. The things machine learning can and cannot do, so as
to avoid misconceptions, will need to be communicated.
Moreover, many chemists do not have sufficient knowledge of
coding, machine learning and AI. It would be benecial for
large chemical organisations such as the Royal Society of
Chemistry and ACS to make available webinars and courses that
address this deciency. Some universities teach their undergrad
students courses such as “maths of chemists” (when maths was
not their strong point prior joining the course). This could
11986 | Chem. Sci., 2020, 11, 11973–11988
similarly be done for chemists of all disciplines and experience
(not just for organic chemistry or for undergrads), i.e.
“computer science” or “coding for chemists”.

Conclusion

To summarise, we have shown that the synthesis of small
molecules and pharmaceutical compounds can proceed via
automated continuous ow platforms, guided by machine
learning and AI with little human interaction. Some retro-
synthetic algorithms can work relatively independently while
others rely a bit more on chemists digitising reactions. At rst,
the latter will be tedious and time consuming but will eventually
lead to results that could be used to generate databases for
known processes. There are still some challenges and further
advances to be overcome, including convincing experimental
scientists that automated ow is not designed to be their
replacement but rather to assist them and to make experiments
and discovery faster, more efficient and reproducible. The
reality is that modern computers and advanced algorithms can
use the massive amounts of information in the literature and
reaction databases to build the chemical space of a molecule in
a way that is far superior to that of a human. From here, known
targets can be synthesised in practice, optimised by merits
chosen by the operator, and new compounds and novel
This journal is © The Royal Society of Chemistry 2020
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chemistries can be discovered. Constructing models and
carrying out optimised forward reactions are ideal tasks for
automation. As we have outlined herein, the quality of reactions
performed via digitised chemistry operating in automated and
robotic ow can not only compete with expert chemists, but also
be a hundred to a thousand times faster. In order to further the
goal of automated synthesis in a ow system, not only would
reactions have to occur as independently from humans as
possible, but it would also be able to design and predict its own
viable routes to particular chemical compounds so that it may
then carry them out and subsequently enable scale-up. An ideal
system would be fully automated, in the sense that it would be
able to create the chemical space of a molecule, search through
it to design and predict the best possible (feasible) routes to
a target compound and then automatically implement them in
practice. Moreover, a universal standard for a coding language
and online, available chemical spaces or digital, forward reac-
tion recipe les do not yet exist. By taking the context of this
paper into consideration, however, they could one day become
an additional part of the chemist's ever-expanding arsenal, with
machine-powered learning and humans working side-by-side to
produce lab- and industrial-scale material more efficiently and
safely. Multistep syntheses to target molecules could then be
performed in a matter of hours to days rather than weeks to
months.
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