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A tutored discourse on microcontrollers, single
board computers and their applications to
monitor and control chemical reactions†

Daniel E. Fitzpatrick, a Matthew O'Brien b and Steven V. Ley *a

This Tutored Discourse constitutes a preliminary exposure on how synthesis chemists can engage

positively with inexpensive, low-power microcontrollers to aid control, monitoring and optimisation of

chemical reactions. The acquired skillset adds a new aspect to the toolbox of molecular construction,

especially going forward in an ever-increasing digital machine-assisted world. It attempts to break down

some of the barriers and myths to adoption of these techniques and to provide a basis for further

innovation and discovery.

Introduction

For many years now we have been advocating a machine-
assisted approach to complex organic synthesis
programmes.1,2 As part of this development, and the new
world involving machine-to-machine learning and artificial
intelligence (AI) algorithms,3 there has been a clear need to
advance our knowledge of underpinning technologies. In
particular, the role that inexpensive and commercially-
available microcontrollers and single board computers can
play in controlling and managing synthesis equipment over a
wide range of applications and chemistries. While the benefits
of using these devices can be truly game changing and create
many synthesis opportunities,4 not the least of which is to
facilitate maximising the human resource, synthesis chemists
are mostly unfamiliar with these microcontroller units and
particularly in writing appropriate operational code.

In this Tutored Discourse we try to overcome some of the
barriers to adoption of these methods by providing the
beginning of a practical course to get started in the area. It is
not our intention to go beyond a basic understanding at this
stage; rather it is to provide the practising synthetic chemist
with additional skillsets and language to better engage with
engineers and those developing advanced machine learning
techniques for future applications.

Applications

We initiated our own programme in computer control and
microprocessors in 2012 when we had need to develop a new

prototype magnetic field induced mixer device for flow
chemistry.5 This unit was designed to afford excellent
mechanical mixing within tubular flow reactors. In this work
an ATmega 328P microcontroller was programmed with single
C/C++ script commands to mechanically oscillate, in a linear
fashion, a magnetic stirrer bar within a tubular flow mixer.

In a second application (discussed in detail later) we
devised a prototype continuous flow liquid–liquid extraction
system,6 which has served us well in numerous examples.
Here we used an inexpensive consumer webcam to observe
and monitor the liquid–liquid interface enhanced by
positioning a small green plastic float at the phase boundary.
Using Python control scripts and several open source viewing
packages we were able to provide appropriate feedback
information and machine control to effect automated
continuous extraction. The system could be extended to also
achieve multiple stage liquid–liquid extraction of more
complex and more polar reaction products.7

For a more comprehensive use of camera enabled
techniques for organic synthesis, the reader is directed to a
review of the area.8

Subsequently we harnessed the Raspberry Pi computer to
monitor and control the automated multi-step flow
preparation of piperazine-2-carboxamide (a component of
Rifater used in the treatment of tuberculosis).9

During a further example for a flow-based synthesis of
oxazolines and oxazoles, a software protocol written in Python
was used to control a Raspberry Pi to drive reactor
components, such as pumps and valves, in a pre-programmed
sequence of timed actions.10

A complex systems approach towards intelligent self-
controlling platforms for integrated continuous reaction
sequences has been reported by our group.11 Here it is
instructive to view how the different elements of chemistry,
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engineering and informatics12 are coordinated during a
multistep preparation and downstream work-up of a key
adamantane derivative needed for other work are managed.

For more general articles on the future of machine-based
technologies we would recommend consulting the essay on
The Internet of Chemical Things13 and an overarching review
on enabling tools.14

Finally, in three further papers we describe particularly how
web-based techniques operating devices through the internet15

and the cloud can enhance autonomous self-optimization and
integration with batch processing,16 permitting remote control
and access across the world, independently of time domains.17

Later in this paper we describe in more detail how these self-
optimisation algorithms work and how they can be harnessed
for a wide variety of applications.

We have also not been alone in developing these
microprocessor-enhanced procedures and here highlight other
work that further exemplifies the power of the methods.18,19

A Tutored Discourse

This article has been written to act as an introduction for
chemists to the use of microcontrollers and computers for
synthesis applications. It assumes no prior knowledge on the
part of readers in the area of computer programming. Each of
the following sections can be taken as separate lessons, which
cover a wide base of material and include code examples. We
have put together a list of materials and components (refer to
appendix A) which can be purchased from commercial
suppliers and which form the basis of examples in sections 1
through 4. The appendix also includes a glossary of terms
used in various places throughout this article.

The material covered has been put together from a hands-
on workshop held at the University of Bielefeld as part of the
ONE-FLOW research programme (Fig. 1).20

Section 1. Introduction to
microcontrollers, the Raspberry Pi
and ESP32 board
What are microcontrollers?

The term microcontroller refers to a particular type of silicon
chip which incorporates a microprocessor, memory and

input/output peripherals together in a single integrated
circuit. Since their emergence in the early 1970s, with devices
like the Intel-4004 and the Texas Instruments TMS1000,
microcontrollers have steadily grown in both capability and
affordability. During this period, the development of modern
non-volatile memory technologies (such as flash memory)
has also dramatically increased their ease of use. A number
of microcontroller families (including the AVR Atmega,
STM32, PIC micro), have become very popular with hobbyists
and educators. In particular, several microcontroller/
programming systems have been specifically developed
aimed at these markets, including the PICAXE, Basic Stamp
and Arduino systems. These generally use a bootloader
approach to program existing microcontrollers, allowing
them to be reprogrammed with alternate language variants
(for instance, PICAXE devices are PIC microcontrollers whose
firmware has been modified to allow them to be programmed
using a variant of BASIC).

Microcontrollers can now generally be programmed from
another computer (including the Raspberry Pi as described
later in this section) simply by plugging in a suitable cable
(e.g. USB) to perform a variety of functions depending on the
capabilities of the circuit.

For example, most microcontrollers are able to measure
changes in voltage applied to a pin which may, in a chemistry
context, arise from changes in temperature (thermocouple)
or acidity/alkalinity (pH probe) of a reaction medium. In
addition to accepting input, microcontrollers are also usually
capable of providing electronic output, from simply turning a
voltage on or off, to the built-in use of common
communication protocols (e.g. Serial/RS-232, SPI, I2C etc.).

While most modern computer systems run an operating
system on top of which the user-facing software runs, the
majority of microcontrollers are not sufficiently advanced
or complex to support such operation. Instead, they are
programmed directly, either using binary/assembly code
or, far more commonly, binary code compiled from
C-style languages such as C or C++. A variety of tools exist
which allow the compilation (or conversion) of C code
into a form suitable for running on the microcontroller,
such as the Arduino IDE which we will use in sections 1
and 2.

The ESP32 board

The ESP32 series of microcontrollers (Fig. 2, right), developed
by Espressif Systems in Shanghai, were released in 2016. The
core architecture is based on a Tensilica/Xtensa dual-core
LX6 32-bit microprocessor, running at 240 MHz. With built
in Wi-Fi and Bluetooth, development boards based on these
devices have become extremely popular, partly due to their
low cost (ca. £7 per board) and impressive array of input/
output channels. They can be programmed in C/C++ via a
USB cable using the Espressif IDE.

Additionally, an ESP32 add-on for the Arduino IDE can be
installed which allows them to be programmed using the

Fig. 1 This Tutored Discourse is based on a workshop held at the
University of Bielefeld (pictured above).
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Arduino variant of C/C++ (including the Arduino libraries)
and this was the approach taken for the workshop. For
several reasons, we used the Raspberry Pi single board
computers to programme the ESP32 boards in the workshop.
Although the Arduino IDE is available for the Raspberry Pi
(Linux-ARM) system, a packaged ESP32 compiler toolchain
for Linux-ARM systems was not officially available at the time
of the workshop.

To get around this, we compiled the ESP32 toolchain for
the Raspberry Pi using the Crosstool-NG system. It is not
necessary to do this if the ESP32 is programmed on a regular
Windows or Linux x86 system (for which toolchains were
available). It should also be pointed out that all of the
examples used in the workshop would also run on many
other boards programmable using the Arduino Integrated
Development Environment (IDE), a tool which enables users
to write code, compile then write directly to connected
Arduino boards.

The Raspberry Pi

Developed by the Raspberry-Pi Foundation to promote
computer science education in schools, the Raspberry Pi
single board computer (Fig. 2, left) was first released in 2012.
Due to its low cost, small size, and range of input/output
capabilities, it has rapidly become popular in the electronics
and robotics hobby community and has been used in a
number of scientific applications. Its central CPU is based on
an ARM architecture and the latest version (RPi v4) has a
quad core ARM Cortex A-72 processor running at 1.5 GHz.
With versions having 1, 2 and 4 GB of RAM available, the
Raspberry Pi is capable of being used as a general-purposed
desktop computer. Although the officially released standard
operating system is based on Linux (Debian), a range of
operating systems (including Windows, FreeBSD and RISC
OS) are available for it.

The command line

Although the Windows operating system provides the user
with a way of entering typed instructions (e.g. a command-

prompt or powershell) this is, for most users, seldom used
and the graphical user interface (GUI) is the principle
method of interaction. However, in Linux-based operating
systems (such as used on the Raspberry Pi) it is far more
common to use the command line and, indeed, many
fundamental tasks are more difficult to carry out without it.
The workshop started with an explanation of how to open a
‘shell’ (the command line system) and with the basics of file
system navigation (e.g. the cd, ls, mkdir, rm, mv commands).
Specific details on the use of these core functions is beyond
the scope of this Tutored Discourse, and so we direct
interested readers to online resources for more
information.21

Writing a C script

Although the focus of the workshop was on programming
the ESP32 in Arduino C/C++ and the Raspberry Pi in
Python, it is useful for anybody interested in programming
to understand how to compile C code on common
architectures using the GNU C Compiler (GCC, a widely
available open-source compiler). This began with the
familiar ‘hello’ example, using Geany as the text editor to
create the following code:

This simple program contains the basic components of C
code. The ‘main’ function block (the only block in this
case) is where execution starts. Blocks of code are contained
within curly brackets {}. Each statement in a block (only
one in this case) ends with a semi-colon. The #include
statements allow various functions to be called. Here, the
‘printf’ function is contained in the ‘stdio.h’ header file.
After saving (e.g. as ‘myfile.c’), this was compiled using GCC
with:

To convert the input myfile.c file into the executable
binary file myfile.out. This can then be run with:

Whilst this isn't particularly interesting (merely printing
the text “hello FET” to the command line), it shows how
straightforward the compilation process can be using the
command line. More interestingly, a number of command-
line tools allow the user to look inside the executable binary
file:

Fig. 2 The Raspberry Pi computer (left) and ESP32 board (right), with
a £1 coin for scale.
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Which shows the headers of the binary file, revealing that
it is an elf (executable and linkable format) file, the standard
binary executable format for Linux systems, as well as the
architecture (ARM on the Raspberry Pi).

This command reveals the executable sections of the
binary file, including the assembly language instructions (e.g.
mov, pop etc.) which the C code is converted to.

The above can be used to reveal all the section headers.

And finally this command will open the binary file and
show the actual zeros and ones (which ultimately correspond
to turning voltages off or on) that make up the executable
file.

While any detailed analysis of the binary files would be
well beyond the scope of the workshop, this cursory
inspection does reveal the link between the code files (which
are generally the same for different operating systems and
architectures) and the compiled executable binary files
(which will be generally different for each type of computer
architecture). It also makes clear the requirement for a
suitable compiler for the desired target architecture. The vi
command line text editor can also be used to view binary files
if the ‘:%!xxd’ command is entered after opening the file to
switch into binary mode.

In addition to these commands, the gcc compiler can also
be used with the -S switch to create a text file (myfile.s) that
contains assembly language instructions:

Before moving to the ESP32, a small number of basic C
scripts were written and compiled/executed to introduce
some basic components of the language. The final C code in
this series, when executed, asks the user to enter a number
and converts it from a Celsius temperature to a Fahrenheit
temperature:

This simple program highlights a number of important
aspects of the C programming language. Again, there is a
main loop (where actual execution begins) as well as some
#include statements which will ensure that the required
functions are available. Before the main loop, a function
‘ctof’ is defined, which is later used within the main block.

When functions in C are defined, the variable name for the
input (in this case ‘c’) as well as the datatype of the input (in
this case ‘int’ for integer) must generally be defined within the
brackets () after the function name. The datatype of the output
(in this case ‘float’ for a floating-point number) must also be
defined before the function name. This highlights the
importance (and necessity) of memory space management when
using C (each datatype uses a different amount of memory).

In the function ‘ctof’, a floating-point number f is declared
which is the result of multiplying the input ‘c’ by 9.0, dividing
by 5.0 and adding 32. The result is returned to the main loop.
The function is called in the last line of the main loop:
‘ctofĲcel)’ takes the value of the variable ‘cel’ and passes it to
the ‘ctof’ function, which returns the corresponding output.

The first line of the main loop declares (and thus creates the
required space in memory) a character array called ‘i’ which is 6
bytes long. This is essentially enough space to store 6 characters
(letters or numbers). Each of these memory locations is then filled
with the ‘\0’ character, which symbolised the end of the array.
The ‘fgets’ line takes up to 6 characters of the text input by the
user and places them in the character array i. The ‘for’ loop goes
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through each of these values and checks to see if they are equal
to ‘\n’ (the return character) and, if so, replaces that character
with the end-of-array character ‘\0’. In the character array, the
value entered by the user is not in the correct form to undergo
arithmetic operations, so is converted to an integer using the
‘atoi’ function, after which it can be passed to the ‘ctof’ function.

It is worth noting that with the C language, whitespace
(e.g. spaces or blank lines in code, other than spaces between
each command) or indentation (the starting position of each
line) generally has no influence on the meaning of the code.
For instance, the same script could equally be written as:

and would still have the same effect. While many programmers
will tend to write more ‘readable’ code, there is no requirement
to do so and several different protocols are often seen.

ESP32 scripts

The scripts for the ESP32 were written using the Arduino IDE
on the Raspberry Pi. It is important to point out that many of
the commands available in the Arduino IDE are non-
standard commands in the C language, and won't be
understood by a standard C compiler (such as GCC). These
are part of the Arduino ‘libraries’, which are built in to the
Arduino IDE system. More information about the libraries
available can be found on the Arduino website.22

The first script, shown below, blinks an LED connected to
one of the pins of the board (in fact, it uses the built-in LED
which is connected to pin 1). In this script, the pinMode and
digitalWrite commands are Arduino specific terms.

Unlike standard C scripts, which have a ‘main’
function/block, Arduino scripts (also known as sketches)

have a ‘loop’ function/block, which repeats itself
indefinitely. In addition, they can optionally also have a
‘setup’ block. The ‘setup’ block is where code execution
begins. As the name suggests, this block executes once,
when the program is run. Note that the name of each
block/function is preceded by the word ‘void’. All
functions in C must state the data type that will be
returned by the function. If the function doesn't actually
return any data (in other words it just executes code) then
this is indicated by ‘void’. The setup function in this case
tells the ESP32 to use pin number 1 as an output pin,
meaning the program can turn it off or on (note: the
#define line means that every instance of the word
‘MYPIN’ will be replaced by the number 1). In the ‘loop’
function, the voltage on the pin is either turned high or
low, with a 400 millisecond delay in between each.

Generally speaking, Arduino C scripts are compiled using
the button on the graphic user interface, although a
command-line interface also exists. It is interesting to open
the build folder for the Arduino IDE during compilation, as
several files are created and destroyed, eventually leading to
an executable binary file which is written to the ESP32 over
the USB cable. It should be pointed out that compilation
times for Arduino code on the Raspberry Pi can be very
long. In order to save time during the workshop,
precompiled binaries were also used. The binary files can
also be opened using xxd and the other commands
mentioned earlier.

Several aspects of Arduino C programming were
demonstrated with a series of scripts and circuits,
including one in which a potentiometer knob can be used
to control the speed at which a motor turns. The circuit,
which used an inexpensive 28BYJ-48 stepper motor (approx.
£2 including driver board) had connections as shown in
Fig. 3.

The corresponding script is shown below:

Fig. 3 Wiring connections to drive a stepper motor using an ESP32
board and potentiometer.
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Before the ‘setup’ function, several variables are
established, including those that hold the pin numbers
which will be connected to the potentiometer and to the
stepper motor driver board. The pin numbers for the stepper
motor are placed into an integer array (called ‘pins’). The 8 ×
4 array of boolean values (zeros or ones) called ‘stepseq’ is
created. The motion of the stepper motor, as pins are turned
on or off in this sequence should be possible to discern. The
‘ones’, which tend to move from left to right according to the
sequence, correspond to magnets being activated. These
magnets (or sets of magnets to be more precise) are arranged
in sequences around the core of the stepper motor.

In the ‘setup’ function/block, the output pins are
initialised and serial communication to the Raspberry Pi
computer is setup (this allows text to be sent to the Raspberry
Pi – or whichever computer the ESP32 was attached to – via
the USB cable during execution). In the ‘loop’ function, two

interleaved ‘for’ loops set the values of the output pins to
match the values shown in the stepseq array. In the ‘outer’
loop, each time the sequence of output pin values changes,
the voltage from the sensor pin (e.g. the one attached to the
potentiometer, which can range continuously between 0 and
3.3 V) is read (using ‘analogueRead’ – another Arduino
specific function) and this is converted to an integer value
that ranges between 0 and 4096 (212 as the pin has a 12-bit
analogue-to-digital converter). The delay function then uses
this value to use up a certain amount of time until the next
cycle of the outer loop. In this way, the potentiometer setting
controls the speed at which the motor turns.

More example applications are included in the ESI.†

Section 2. Python and the Raspberry Pi
Introduction to Python

In the C programming language, memory has to be explicitly
allocated for each data structure. For situations that require a
more flexible approach (e.g. when the size of the data structure
isn't known in advance), then dynamic memory allocation and
reallocation is possible. However, this is one area where things
can become quite technical for non-programmers.

In recent years, a number of ‘high level’ programming
languages have emerged that allow users to focus on the main
desired functionality of the program without worrying too
much about the detailed aspects of implementation. Python,
developed by Guido van Rossum and first released in 1991, is
one such language that has become extremely popular in a
number of fields, including among the scientific community.

In very simple terms, it can be thought of as a
programming system that sits on-top of lower level languages
(such as C and Fortran). When scripts are run, they are
compiled into something called ‘bytecode’, which is akin to a
machine/assembly language for a virtual Python computer.
This is then translated into the corresponding machine code
for the particular hardware that the program is running on
(this will generally be different on different architectures
and/or operating systems). In this way, Python code should
be transferrable from one machine to another. The language
has been designed to be easy to learn and easy to use.

In many cases, the programmer does not need to worry
about issues such as memory allocation. Generally speaking,
Python is intended to be used on systems where significant
memory is available, although variants (e.g. MicroPython and
CircuitPython) are available for use on microcontrollers.
Another significant feature of Python is the use of indentation
level as a way to structure the code into blocks (c.f. the use of
curly brackets in C, above). This generally makes code easier
to read, although the indentation must be precise (each
indentation level is either one tab space or four spaces).

Another significant difference between Python and C is
the fact that Python has a REPL (read–evaluate–print–loop)
shell available to it. This is somewhat similar to the
command line shell in Linux, in that commands can be
entered into the prompt. Data and variables are preserved
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throughout each shell session, allowing code to be run
dynamically, one command at a time (e.g. without having to
write a script and compile it first). This capability is not
generally available using the C programming language.
Although several IDEs and shells are available for Python
development, the standard IDLE shell that comes with Python
was used in the workshop. Most operating systems available
for the Raspberry Pi have Python installed as standard.

Using Python with the Raspberry Pi

A simple REPL session was used to introduce several key
features and data structures commonly encountered in Python
(including variables, functions, and key data structures such as
lists, strings, tuples and dictionaries). To provide some
understanding of the link between Python as a high-level
language and its low-level implementation in C, it is instructive
to inspect the actual source code for various Python objects. For
instance, the several pages of code for dictionary object (which
can be downloaded from https://github.com/python/cpython/
blob/master/Objects/dictobject.c) highlight the fact that Python
handles quite a lot of detailed low-level implementation while
providing a very simple and efficient interface.

The first actual Python script written in the workshop
simply turned a connected LED light on and off ten times in
a row. The circuit is shown in Fig. 4 (only the green LED will
be used, the other LEDs will be used in later scripts).

The Python code is as follows:

The first line uses the ‘import’ command to import the RPi.
GPIO module (which contains all the functionality required to
control the GPIO input/output channels on the Raspberry Pi). The
‘as gpio’ means that we will henceforth call this ‘gpio’ instead of
‘RPi.GPIO’ (which simply makes it easier to write). The ‘import’
command is similar to the ‘#include’ statements in C. The second
line also imports something from the ‘time’ module, but rather
than importing the whole module, it just imports the ‘sleep’
function. The third line uses the ‘setmode’ function within the
RPi.GPIO module (which we are calling ‘gpio’). The ‘dot’ notation
seen here (in ‘gpio.setmode’) is common in Python and is a way
to access the inner functions of modules or objects (so this
accesses the ‘setmode’ function within ‘gpio’). The ‘gpio.BOARD’
sets up a particular numbering scheme for the GPIO input/output
channels of the Rasperry Pi (there are two alternative numbering
conventions). The fourth line sets up pin 3 as an output pin.

The main block in the code is a ‘for’ loop. This creates a
variable called x, which will have values ranging from 0 to 9
(this is specified by ‘rangeĲ10)’). It then runs through the

following block of code, once for each value of x in sequence.
The ‘gpio.output(3, 1)’ line turns on pin 3 and the ‘gpio.
output(3, 0)’ line turns it off. In between each, the program
sleeps (i.e. does absolutely nothing) for 0.1 seconds. The
indentation pattern for the ‘for’ loop is quite straightforward.
Every line in the block is indented by one position exactly.

In a subsequent script, the user is asked to enter a
command, and if either ‘green’, ‘red’ or ‘yellow’ are entered,
the corresponding LED lights up. By placing this inside a
‘while True’ loop, the user will keep being asked to enter
another colour once the blinking sequence has finished:

In this case, the code for the turning on and off of the
LED pin is placed inside a function (called ‘blink’). Functions
in Python are defined with the ‘def’ keyword, followed by the
name of the function and also a variable name (or names)
for input that will be provided to the function. Here, the
letter ‘n’ is used. In Python, ‘while (statement)’ loops
repeatedly run until the statement that follows them stops
being true. By using ‘While True’, this loop will repeat
forever, as the ‘True’ keyword will always be true. It is
important to include some way to break out of the loop. The
x = input (“enter colour:”) line asks the user for a colour and
places the input word into a variable called x.

Notice that, in Python, a program does not need to
specify the data type when a variable is created/declared.
The ‘ledpins’ is a dictionary object. The ‘if x in ledpins’,
looks to see if the word in x is actually in the dictionary,
and if it is, send the corresponding number (e.g. 3 for
green, 5 for yellow, 7 for red) to the blink function (which
will then use this number in place of n). If the ‘if’
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statement is not true (if the word entered is not in the
ledpins dictionary), the else statement will execute (telling
the user to enter one of the colours). If the user enters
‘quit’, the break command will cause the program to exit
the loop. Note the nested indentation. For instance, the ‘if
x in ledpins:’ line is indented relative to the ‘while True’
line, indicating that it is part of the ‘while True’ code block.
The ‘blink (ledpins[x])’ line is further indented one position
relative to the ‘while True’ line, thereby signifying that it is
part of the ‘if x in ledpins’ code block.

An obvious limitation to the functionality of this code is
the inability to have the blink function operate with different
LEDs at the same time. In many situations, for all but the
most simple of systems, it will be necessary to have the
program doing several tasks simultaneously. One way to do
this in Python is to use threading. Rather than have a single
‘thread’ of execution, we can have several ‘threads’ that run
concurrently. The following code creates a new thread each
time the user enters a colour. That thread then runs
independently and execution passes straight back to the
main loop, so the user can enter colours before waiting for
existing commands to complete:

As can be seen, it is very similar to the previous script,
except the simple call to the blink function has been change
to the following two lines:

The ‘thread1 =’ line creates a thread object (called
‘thread1’). The ‘target = blink’ statement in the following
brackets indicates that it is the ‘blink’ function that should
be run in the thread. The ‘args = ledpins[x]’ statement tells
Python that we want the value of ‘ledpins[x]’ (i.e. whatever
number corresponds to the colour entered) to be passed into
the blink function. The following line simply starts this
thread running. When the blink function has finished (after
the LED has blinked on and off ten times), the thread will
effectively cease to operate. It does not matter that all threads
will be given the name ‘thread1’ as they will all be
independent of each other and we don't need to distinguish
between them at any point.

Although this program does work, the operation might
not be quite as expected. If the user keeps on entering ‘red’,
before the previous ‘red’ blink function has finished, we will
then have two different threads turning the red LED on and
off, so the sequence will not be the same as before (i.e.
turning on and off in the same sequence).

Perhaps a more desirable mode of operation would be for
the user to enter commands (or more generally for the
program to receive commands from some channel), and for
these to be stored and run through with the original timing.
In other words, if the user enters ‘red’ before a previous ‘red’
blinking sequence has finished, can we get the program to
wait until the current ‘red’ blinking function has finished
before starting the new one?

One way of doing this in Python is to use a queue object.
This basically behaves as its name suggests. Items enter the
queue at one end and leave at the other, in a first-in-first-out
manner. We can have a queue for each type of LED (green,
red and yellow) and place the corresponding commands in

Fig. 4 Wiring connections to power LEDs from a Raspberry Pi, using a
Python script.

Reaction Chemistry & EngineeringTutorial Account

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Ja

nu
ar

y 
20

20
. D

ow
nl

oa
de

d 
on

 9
/1

8/
20

24
 1

:1
9:

26
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/C9RE00407F


React. Chem. Eng., 2020, 5, 201–220 | 209This journal is © The Royal Society of Chemistry 2020

their respective queues. We can then have a thread for each
colour that is responsible for checking for the presence of
commands in its queue and, if one is present, activating the
blink function for that LED. A simple version of such a
program is shown below:

The script is quite similar to the previous one, except we
now have three separate threads running – one for each
colour, in addition to the main program thread (which runs
the ‘while True’ loop that receives input from the user). We
also have three queues that were created with the ‘redq =
queue.Queue()’ line (and corresponding lines for yellow and
green). The words ‘red’, ‘green’ or ‘yellow’ are placed in the
relevant queue by the main ‘while True’ loop that gets user
input. Each of the threads monitoring the queues (the
redthread, greenthread and yellowthread) has a ‘while True’
loop that cycles through continuously checking to see if an
item has been put into its related queue.

For instance, if the thread running the redrunner function
sees something in the redq queue, it takes it out of the queue
(so that the queue will have one less item in it), and then runs
the blink function using the corresponding number from the
ledpins dictionary. Note that this redrunner thread will then
do nothing else until the blink function completes (as the
blink function is not running in a separate thread). After the
blink function finishes, execution will then return to the
thread running the redrunner function and it will continue to
repeat its continuous monitoring of the redq queue.

One line worth noting is ‘sleepĲ0.001)’ in the redrunner
function. This prevents the computer using too much of its
CPU/memory resources going through this ‘while True’ loop.
If this line wasn't there, the program would still run but
might well cause the computer to slow down as it could be
running through the ‘while True’ loop as fast as possible
(possibly billions of times per second). Checking the redq
queue once every millisecond is fast enough.
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Another feature of the redrunner, yellowrunner and
greenrunner functions is that the ‘while True’ loop initially
has an ‘if’ statement that checks to see if the FINISH variable
is True. If this is so, the ‘break’ command causes execution
to escape the ‘while True’ loop, essentially bringing the
thread execution to an end. The FINISH variable is set to
False at the start of the program. This kind of control
variable is sometimes referred to as a ‘flag’ variable.

As written, this script will wait for any currently running
‘blink’ functions to complete before quitting. If more
immediate quitting is required, then corresponding ‘if
FINISH: break’ statements could be placed within the blink
function itself. Also, whilst this script works as expected
when executed from the command line on the Raspberry Pi,
it sometimes doesn't cleanly exit if run from the IDLE shell.
This can be solved by placing ‘redthread.join()’,
‘greenthread.join()’ and ‘yellowthread.join()’ statements
before the final ‘break’ statement in the ‘if x==‘quit” block.

Note that, in this script, we are placing the ‘red’, ‘green’ and
‘yellow’ commands into the queues merely as placeholders. The
program doesn't actually do anything in particular with these
commands and we could actually put anything in the queue
instead. However, in might often be the case that we want to
place different commands into a queue and have the program
act accordingly. For instance, if we had two different types of
blink function, blink1 and blink2, and wanted to be able to run
either, depending on the user input, we could use:

Of course, the section of code relevant to the user input
would also have to be changed to accommodate this.

While these examples have been fairly simple, more
complicated threading operations may be required, and this
might involve creating new threads from within threads,
which is perfectly possible. For instance, if we had created
several functions called func1, func2 and func3 we could
create a dictionary (called ‘funcs’ below) linking the words
‘func1’, ‘func2’ and ‘func3’ (or whatever words we wished) to
the functions themselves:

The corresponding function code (e.g. for redrunner)
would then look like:

This then creates a new thread for each command placed
in the queue, and the function running within each thread
depends on the command itself. Note that, in this function
as written, the threads will be created as soon as the
command enters the corresponding queue (e.g. redq). If we
want to wait for one threaded function to complete before we
start the next one, we can add the following line just after the
‘thread1.start()’ line:

This essentially forces the redrunner function to wait until
thread1 has done whatever it is supposed to do before
continuing with its own execution.

Section 3. Applications to chemistry
and machine vision
Automation and control for chemistry

The first two sections provide a general overview of how
microcontrollers can be used to manipulate peripheral units,
such as stepper motors and LEDs. These examples can be
adapted to suit a chemical environment already; for example,
a stepper motor could be used to change a valve position and
a group of precise-wavelength LEDs could be used to irradiate
a photo-catalysed reaction. In the following three sections, we
will discuss how the material above can be applied in further
experiment applications.

There exist many examples in literature where control systems
have been harnessed to automate synthetic procedures. As this
area has been well-reviewed previously,1,2 we will highlight a few
specific examples from our own research group here.

Recently we have reported the development of a reaction
monitoring and control platform,15 which was used to
automate a cycling catalytic process and conduct self-
optimisation using both mass spectrometry and infrared
spectrometry to determine performance of automatically-
generated experiments (Fig. 5). More information about self-
optimisation algorithms and how you can apply them to your
own experiments is covered in Section 5.

The same system has been used to perform multi-step,
telescoped reaction sequences where material from upstream
reaction steps was directed to subsequent reactions without
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manual intervention or purification by operators.16 Inter-
stage liquid–liquid extraction and solvent switching were also
automated in this process, allowing batch and flow
procedures to be integrated when producing 5-methyl-4-
propylthiophene-2-carboxylic acid, a precursor to the anti-
cancer drug candidate AZ82.

Both of these reports utilised machine vision for key
elements of automation, as discussed in more later in this
section. For the first, a Raspberry Pi and consumer webcam
were linked to the control system to monitor the fluid level
in a reagent reservoir. For the second, a webcam monitored
the position of an interphase boundary in a continuous
liquid–liquid extraction system.

Software for automation

The examples above utilised a software platform developed
using a mixture of two programming languages; namely PHP
(to more easily facilitate the web-based nature of the system)
and Python (to integrate with reaction equipment). Section 4
covers networking and in particular how the Raspberry Pi can
be connected to the internet in such a way as to enable
remote control of your own equipment.

It is worth noting, however, applications of automation do
not exclusively use either PHP or Python. Indeed, there have
been many reports of other packages being used to perform
similar functions. One of the most popular has been
LabVIEW, as discussed in a recent perspective,23 largely
owing to its visual nature and resulting ease of use for
researchers with limited programming experience.

Machine vision

By connecting a consumer grade webcam to computing
devices, it is possible to give control software the ability to
view chemical processes in a similar manner as a human
operator. For example, the movement of reaction fronts can
be observed24 and colour changes can be monitored.25 In
2013 we published a review covering a variety of applications
of machine vision as applied to synthesis.8

These applications primarily rely on the detection of
boundaries within an image frame, such as that gathered in
real-time by a web camera. For the examples described above,
the position of a green plastic float was monitored via a
relatively simple process where green-heavy pixels were
identified and tracked. If the bulk of these pixels moved then
appropriate control script decisions were made; when
monitoring the fluid level in a reservoir (Fig. 6a) this might
involve following a shutdown procedure if holdings of
feedstock solutions were to deplete, or during an extraction
the fluid flow drawn from a separating column (Fig. 6b)
might be increased or decreased to maintain the position of
the interphase boundary.

Raspberry Pi and Python for machine vision

Fortunately the heavy-lifting of image processing and analysis
can be relegated to an open-source software package called
OpenCV,26 and so adding support for machine vision to your
own applications is relatively straightforward.

Within Python, a wrapper library has been created which
simplifies the use of OpenCV even further. Software libraries
contain sections of pre-written code which perform common
actions or define useful variables which can be used and
referenced in your own code. In this case, SimpleCV
condenses the steps needed to connect to your web camera
and acquire an image into a few lines of code. It also
contains functions to perform colour processing/analysis of
images, as demonstrated in the example below.

Example

In this example, we will use a Raspberry Pi and consumer
grade web camera to detect the position of a green dot on a
printed sheet of paper (appendix B). We will be writing a

Fig. 5 a) Feedback from an in-line IR detector was used to determine
new experimental conditions, such as pump flow rates and reactor
temperatures; b) photograph of the experimental set up for a five-
dimensional self-optimisation of an Appel reaction. Adapted from ref. 15.

Fig. 6 a) Inexpensive consumer-grade web cameras have been used
to monitor fluid levels in reservoirs during experiment automation; b)
similar technology has been used for continuous liquid–liquid
separation.
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Python script using SimpleCV to output the coordinates of
the dot to a file on the Raspberry Pi. This exact process was
followed in our own work where a green float was tracked
(see above).

Before we begin to write our application code, we first need
to ensure that we have installed SimpleCV and any of its
prerequisites to our Raspberry Pi. At the time of writing, this
process is described on the SimpleCV website.27 We
recommend that you browse to this website using your
Raspberry Pi to download the tools required for your operating
system and version of Python. After installing SimpleCV, select
a directory on your desktop (or in whichever parent directory
you wish) where a new script file can be created.

Pseudocode refers to an informal description of the
actions/steps code should perform to achieve a desired
outcome, designed primarily to be human-readable. It offers
a high-level overview of the objectives of each segment of a
script and can be used to great effect when planning your
code. For this example, we've listed some pseudocode below
which we will then expand with Python commands.

A loop block has been included above as the indented
steps underneath need to be repeated at regular intervals
to ensure that the position of the green dot is monitored
over time, rather than captured just once when the script
starts.

Let's start with the first line of pseudocode, which
initialises and connects to the camera connected to the
Raspberry Pi. The SimpleCV library simplifies greatly this
process, handling all elements of hardware communication
and driver response. Only a single line of code is required,
after importing the SimpleCV library:

For the loop block, we'll create a very simple structure
which will repeat itself constantly until the script is
terminated. This can be done via the command line by
pressing Ctrl + C when a script is running. The

command at the end of the looping block
simply pauses the code cycle repeating by a quarter of a
second, decreasing CPU load on the Pi.

Capturing an image from our web camera is the next step,
and is achieved again using just a single line from the
SimpleCV library. Here the image object is saved into a
variable which we have called .

The next step, where the position of the green dot is
determined, requires a few lines of code to achieve. One
handy function available in SimpleCV allows us to separate
the image object into a list containing three objects: the red,
green and blue components of the original image, which we
have assigned to their own variables in the code below. In
Fig. 7a and b, the output for an example image is shown.

The image objects above are not yet in the required form
for us to reliably determine the position of the green dot. We
first need to perform some more processing, again using
functions built into the SimpleCV library. The first step is to
subtract the blue channel from the green ( ),
leaving us with an image showing where the green dot is on
paper. Then the command will convert each
pixel into either black or white depending on its original
colour/greyscale value.

In order to prepare the black and white image object for
the final command, where the position of the green dot is
calculated, we first must invert the image using the

function. This will return an image object in the
format (Fig. 7c) required for the function,
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which finds the position of any white spots on a black
background in a Python list.

Finally, the last step in our pseudocode is to display the
coordinates of the blob (or green dot) to the user. This can
be achieved using the command.

Section 4. Networking and remote
control

Recently we reported an application of reaction control and
self-optimisation which was spread across the world
geographically.17 The equipment on which reactions were
conducted and analytical data collected were located in our
laboratories in Cambridge, UK, while the control server
directing all experimentation was based in Tokyo, Japan. An
operator was able to initiate and monitor reaction progress
for all examples from Los Angeles, USA. Such an arrangement
removed both time and space restrictions on
experimentation, greatly enhancing our research regime.

This programme could only be achieved by exploiting the
ease of communication enabled by computer networking. In
this example, the server communicated with equipment via
TCP/IP and the operator interacted with the server also via
TCP/IP (Fig. 8).

While the global networking of equipment in our report
required a fairly complex set-up to facilitate communication

(as detailed in the original paper), you can create a local
network in your own laboratory without relying on any
specialist knowledge. Indeed, simply connecting your
Raspberry Pi by ethernet into a router will allow you to
remotely access and control equipment, as detailed in the
example below. This simple arrangement was exploited in a
recent report where 24 individual pieces of equipment were
controlled to enable semi-continuous separation of flow
streams by supercritical fluid chromatography.28

When a new device is connected to a network, it is assigned
an IP address automatically which is used to direct traffic
accordingly. If your device is configured to act as a web server,
it can respond to queries for information via standard HTTP
(or HTTPS) ports (80 and 443 respectively). In other words, you
can set up your Raspberry Pi to act as a server and then access
information from it through an internet browser on another
device on your network by entering in its IP address into the
URL field. This process will be followed in this section's
example to enable you to control a Vapourtec R2R4 from
another device, such as your mobile phone or a tablet.

Cherry Py

A Python library called CherryPy contains the functionality
we require to set up the Raspberry Pi unit as a fully-
functional web server. When a script which incorporates
CherryPy is executed, a new process is created which listens
for requests incoming to port 80 (the standard HTTP port) on
the host device. The script can be configured to return
information in a fully customisable manner, or process
instructions as supplied in the URL (more detail about this is
given in the example below).

In a chemistry context, our group has used CherryPy with
good effect to create remote equipment control stations
(RS232) from a single Raspberry Pi (Fig. 9). Individual units
have been used to control up to 24 pieces of laboratory
equipment simultaneously. The full source code for the script
in this case has been included in appendix C, which builds
upon the example below.

Fig. 7 a) The original image captured by the web camera and
processed images following separation of the red, green and blue
channels of the original image; b) image output following the
subtraction of the green channel from the blue channel; c) final output
after the ‘binarize’ function, then inversion.

Fig. 8 Global networking through the internet was exploited to
perform rapid self-optimisation experiments for three API targets,
allowing an operator in the United States to control equipment in the
United Kingdom through servers in Japan.17
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In order to install CherryPy on your computer, we recommend
following the instructions on the CherryPy website.29

Integrating laboratory equipment with an RS232 server

In this example we will write a script in Python that performs
two key functions that are required to add RS232-compatible
equipment to your network. The first command initiates the
serial port on the host device (setting important parameters,
such as baud rate and destination port) and the second
handles the processing of commands. Any standard USB to
serial adapter can be used with a Raspberry Pi to run this code.
We use the serial adapter listed in appendix A for our research.

Before we attempt to write any code, it is important that we
first find the address of any connected serial ports so that we can
write into our script where commands should be sent. This can
be achieved by opening a terminal session on your Raspberry Pi
and navigating to /dev/ (>cd/dev), then listing all contents (>ll).
In the list that appears, you should see an item named ttyUSB0
or similar. This is the address we will use in our code.

The script

Our script consists of four parts. The first, as is common for
most Python scripts, is made up of a series of import lines
which bring in additional functionality from various
modules, as shown below.

The next part defines the variable of our script which will
allow the use of the serial port. Within the serial definition,
six variables are set. The first, port, is the address to which

commands should be sent and was found using the steps
described above. The baudrate, parity, stopbits and bytesize
are properties that are set by the equipment you are
connecting to (those listed below correspond to the
Vapourtec R2R4 system). Finally timeout defines how long
your script should wait for a response from the equipment
before closing the connection (we have found that half a
second should be more than ample).

The third part comprises the class which powers the core
of our web server. There are three function definitions within
it, which correspond to the exposed ‘pages’ of the server. Any
parameters which should be passed to each function are
defined in the brackets alongside the function name.

For example, if a request were sent to http://[Pi_IP_
address]/initiateport?varbaudrate=9600&vartimeout=0.25 (e.g.

Fig. 9 Photograph of an operational Raspberry Pi (version 3) web
server configured to enable remote control of RS232-compatible
laboratory equipment.
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by opening this in an internet browser on your phone) then
our serial port definition would change to a baudrate of 9600
and a timeout of a quarter second. The server would then
return ok if the settings were adjusted correctly, or error if
something went wrong.

The first function, index, simply returns a message that
the server is active to any requests that are sent to http://[Pi_
IP_address]/.

The third function, command, is the most important
for our script's functionality. It handles sending
commands to the serial port and returning the response
received from the equipment back to the request
originator. The if statement has been included to prevent
blank commands being sent accidentally to equipment.
Within the ser.write line, any commands supplied through
the applicable URL parameter are encoded using the latin-
1 character set (from experience, our group has found
that this avoids issues in some situations and so we
recommend you include it too). Finally, the last line
removes any new line and carriage return characters from
the response collected from the equipment before
returning the result to the requestor.

The fourth part of the script starts the server and starts
listening for requests on port 80. If you wish to listen on a
port different to the default HTTP, the first line can be
adjusted to whichever number you wish (as long as it does
not clash with a port already in use).

In order to test the script, put each of the code blocks
above together into a.py script file on your Raspberry Pi and
execute it. After a few seconds, you will be able to
communication with your Pi using any device connected to
the same local network. For example, having connected an
R2R4 unit to the Pi you can turn it on remotely by opening
http://[Pi_IP_address]/command?command=PN%0D%0A in
an internet browser (the letters following the two percent
symbols correspond to the URL encoded forms of the
carriage return and new line characters respectively).

Section 5. Self-optimisation
Introduction to self-optimisation

A variety of different methods and algorithms exist for self-
optimisation,30,31 usually originating from the disciplines of
mathematics and computer science. The basic procedures
followed by these algorithms are broadly similar: a series of
conditions are trialled systematically, and the response of the
system after each trial is used to select new trial conditions.
The purpose of such a process is to maximise or minimise an

output variable by changing input conditions without
requiring intervention from operators during the
optimisation process. In a synthesis context such a process
might be targeted towards maximising yield, although multi-
variable optimisations have been reported by our own
group15,17 and others.32

Commonly reported self-optimisation algorithms in the
chemistry area include the simplex method and its
derivatives,33 the SNOBFIT algorithm,32 Gaussian
processes,34,35 and evolutionary methods.36 In this section we
will describe in detail a simplex-derived method, known as
the complex method.

While design of experiments (DoE) is not traditionally
considered self-optimisation, as all experiment set points are
defined at the beginning of the reaction process, it can be
useful when exploring new chemical space. DoE procedures
produce a mathematical model of a process output, for
example reaction yield, as affected by various inputs, such as
reaction temperature, across the defined chemical space.
Accordingly DoE does not suffer from some of the more
common setbacks associated with other self-optimisation
techniques, such as identifying only a local maximum or
minimum (which affects simplex-derived methods). Although
further detail about DoE has not been included here, it is
worth noting that a system could be constructed to automate
DoE procedures using material covered in the earlier sections
of this article.

Complex method

The complex method can be used to optimise a
multicomponent, non-linear response within a constrained
space.37 This algorithm changes the standard response of the
system when determining new conditions to try, by extending
or contracting reflected conditions depending on the relative
performance of the most recent experiment. This contrasts
with the original simplex method which follows only a
repetitive reflection process to find an optimum.

As an n-dimensional optimisation technique, the complex
method is ideally suited to flow chemistry applications
where it is possible to adjust any number of continuous
variables within allowable limits to optimise a process
outcome. From a discovery-level perspective, it provides a
rapid and efficient means by which to find optimal
experimental conditions and usually requires significantly
fewer experiments to complete when compared with DoE-
based approaches. However, it is worth noting that it suffers
from the same limitations as the standard simplex method
such as lack of exploration of the full chemical optimisation
space and increased risk of identifying only a local
maximum or minimum.

The evaluation function

Before the system can optimise a chemical reaction, it first
needs something quantifiable that it can use to calculate the
relative performance of a set of reaction conditions. In
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chemistry applications, usually this takes the form of a
mathematical equation that gives an indication of yield using
numerical detector feedback, such as that from a
spectrometer. This equation is referred to by a variety of
terms in literature, including objective function and
optimisation function. Here we refer to it as the evaluation
function.

The algorithm itself

Before beginning a self-optimisation process, experimental
parameters to be optimised must first be identified. Typically
these include reaction temperature, residence time, overall
concentration and stoichiometry. At the same time, the upper
and lower allowable limits of each parameter must be
chosen. This defines the chemical space within which the
optimisation occurs. For example, you may like to optimise a
reaction between the temperatures of 50 °C and 150 °C.

Step 1. Selection of initial conditions. All simplex-based
algorithms follow an iterative ranking and selection process
to choose new trial conditions. In order for this to occur, the
system must first possess a series of experiment setpoints
(iterations) and associated evaluation function responses for
comparison.

While some literature reports select initial conditions on a
random basis, this can lead to issues should points be
clustered close together or lie close to boundary conditions.37

We recommend following a more defined selection process
which selects points spread throughout the defined chemical
space, as described below. No matter the method chosen to
select conditions for initial iterations, a total of n + 1
iterations must be selected (where n is the number of
parameters being optimised). For example, if you were
conducting a 3-dimensional optimisation, where three
experimental parameters were being optimised, then a total
of four initial iterations must be selected.

Conditions for the first iteration should lie at the centre of
the chemical space, as found using:

x1 ¼

u1 þ l1
2

u2 þ l2
2
…

ui þ li
2

2
666666664

3
777777775

(1)

where x1 represents the conditions for the first iteration, and
u1 and l1 are the upper and lower limits respectively of the
ith parameter (such as residence time).

The coordinates of the remaining n iterations are found
by first calculating the upper and lower quartiles of each
parameter, before distributing experimental points
throughout space while ensuring that the iterations do not
all fall on a straight line or plane. This process can best be
represented visually, as shown in Fig. 10, where the first
iteration is positioned in the centre of available space and
the remaining points are placed using quartile limits.

Step 2. Optimisation process. During the complex
optimisation process, iterations are actively added to and
removed from a group of conditions known as the current
experimental set. This set is comprised of the active
iterations that influence the selection of new conditions at
any given time during the optimisation.

After a set of initial iterations has been defined,
experiments are conducted using the set points for each. The
performances of the reactions are calculated using the
evaluation function, and each iteration is ranked from best
to worst with the worst performing iteration, xw, being
reflected through the centroid of an n-dimensional plane
connecting the remaining n iterations (Fig. 11) to find the
next set of conditions, xnext.

The position of the centroid, c, of the remaining iterations
can be calculated using the equation:

c ¼ 1
n

Xn−1
i¼0

xi (2)

The position of the new reflected point is generated with the
equation:

xnext = (1 + α)c − αxw (3)

where α is a reflection coefficient that determines how far
along the extended reflection line the new point should lie.
We recommend that α is set to between 0.9 and 1.1.

Fig. 10 Plots of example two- and three-parameter optimisation
experiments. Subscripts LQ, C and UQ refer to the lower quartile,
centre and upper quartile values, respectively, across the axis range.
The grey/black dots shown correspond to the initial n + 1 set points
needed for optimisation.

Fig. 11 Example reflection process followed to select conditions for
new iterations. These iterations fall on paths intersecting a plane within
the n-dimensional space.
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Having evaluated the performance of xnext, you can take
one of three actions:

1. If this iteration is better than the second worst but
worse than the best, remove the worst performing iteration
from the current experiment set and perform a reflection
using the second worst performing iteration. The reflection
plane used to find the centroid includes the iteration just
evaluated.

2. If this iteration was the best or equal to the best, then
you are likely to be moving in the correct direction for
optimisation and will thus you should perform an extension
where the original reflection path is followed for an
additional distance to find a new set of conditions xext. This
new iteration is calculated using the equation:

xext = γxnext + (1 − γ)c (4)

where γ is an extension coefficient (γ > 1). We recommend γ

is set to between 1.25 and 1.5.
3. If this iteration was the worst or equal to the second

worst, then you should perform a retraction where a new
iteration is generated by moving back along the original path
of reflection towards the centroid. The conditions for this
retracted point xret are calculated using:

xret = βxnext + (1 − β)c (5)

where β is a retraction coefficient (0 < β < 1). We
recommend that β is set to 0.5.

After most iterations, the above process is followed to
determine new experimental conditions. There are only two
scenarios that present exceptions to this procedure:

1. If the most recent iteration was determined through an
extension process, and this iteration is the best performing,
then the previous iteration (i.e. the iteration that led to the
extension) is removed from the current experimental set and
a reflection is performed.

2. If the most recent iteration was a retraction, and is the
worst or equal to the second worst iteration, then a shrinking
is performed where all but the best iterations in the current
experimental set are moved towards the best performing by a
factor of 0.5 to generate a new set of iterations:

xi ¼ 1
2

xbest þ xið Þ (6)

where i = 1, 2, …, n.
In the event that a calculated set point for an experiment

parameter falls outside the allowed chemical space, replace
this set point with the relevant parameter limit.

The above steps are repeated until an optimum is found.
Step 3. Convergence to an optimum. An important aspect

of any optimisation process is determining when an
optimisation is complete. If the process is stopped too soon,
optimal conditions may not be reached. If it is left to
continue for too long, then unnecessary experiments will be
carried out, consuming excess starting material and taking

longer to produce a result. In an ideal system, without limits,
one would stop the complex optimisation process when the
current experimental set is converged to the same set of
conditions. In a synthetic environment this would be
impractical as it would lead to excessive consumption of
starting materials.

We recommend that a modified form of the convergence
checking procedure first proposed by Nelder and Mead when
describing the original simplex algorithm.38 Before checking
for convergence, we recommend that a sufficiently large
number of iterations are carried out (usually n + 4), after
which time the mean and variance of the evaluated responses
in the current experimental set are calculated. You should
then compare the ratio of the variance to the mean against a
predefined convergence criterion (ξ):

1
a

Xa−1
i¼0

f i − f
� �2
f

< ξ (7)

where a is the number of iterations in the current
experimental set, fi is the evaluated response for the ith
iteration and f̄ is the mean evaluated response in the current
experimental set. We recommend that ξ is set to around 0.05
(or 5%).

When this convergence criterion is met, it indicates that
the differences in evaluated response between each iteration
is sufficiently small that no further improvements can be
obtained by continuing the optimisation process.

Worked example

For this worked example, we will manually optimise eqn (8)
within the limits of a and b as shown underneath. You may
like to create a Python or C script to speed this process along,
but performing calculations by hand will give a good feel for
how the optimisation process works.

z = (4a + b)2 (8)

Find the optimal (highest z) for:

a: −75 to 25

b: −50 to 50

Fig. 12 a) Surface plot given by eqn (8); b) contour plot showing a
top-down view of (a).
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Fig. 12 shows the response curve of the evaluation function
against the two input parameters. This can provide a useful
visual guide to ensure that your optimisation is moving in
the correct direction when running through this example,
especially if you choose different conditions for initial
iterations.

The general steps for approaching this problem are as
follows:

1. Find the conditions for the initial n + 1 iterations.
2. Carry out experiments at each point, evaluating

performance using the evaluation function.
3. Rank from best to worst.
4. Follow the process described above to determine the

conditions for the next iteration (e.g. reflection).
5. Repeat the process above until iterations converge.
In this case, as a 2-dimensional optimisation, a total of

three initial conditions need to be chosen. The first is
placed at the centre of the optimisation space, as found
using eqn (1):

x1 ¼
25þ −75ð Þ

2

50þ −50ð Þ
2

2
664

3
775

¼
−25
0

" #

The positions of the two remaining iterations are found by
calculating the upper and lower quartiles of each parameter,
then selecting points to ensure that the initial iterations do
not lie on a straight line. In our example, we selected the
points below:

x2 ¼
−50
−25

� �

x3 ¼
−50
25

� �

The positions of the n + 1 initial conditions are shown in
Fig. 13a. To evaluate the performance of each iteration we
can simply insert the values of a and b for each iteration
into eqn (8), to give the values below. In a synthesis context,
some form of detector feedback would need to be
incorporated having conducted actual experiments using
each iteration, contrasting with the purely mathematical
nature of this example.

x1 evaluated performance: 10 000

x2 evaluated performance: 50 625

x3 evaluated performance: 30 625

As such, x1 is the worst performing iteration and so will be
the candidate for reflection through the centroid of the line
connecting x2 and x3. This gives the point of the next
iteration as follows (Fig. 13b, with α = 1):

c ¼ 1
n

Xn − 1
i¼0

xi

¼ 1
2

−50
−25

" #
þ

−50
25

" # !

¼
−50
0

" #

x4 ¼ 1þ αð Þc −αxw

¼ 1þ 1ð Þ
−50
0

" #
−

−25
0

" #

¼
−75
0

" #

Evaluating the performance of x4 gives a result of 90 000.
As this is better performing than x1, we can remove x1
from the current experimental set leaving the new current
experimental set as shown in Fig. 13c. As it turns out x4
is the best performing of all iterations thus far, and so
the complex method calls for an extension to be
conducted where a new iteration is found further along
the line connecting x1 and x4. However, in this case x4 is
placed at the edge of the allowable optimisation space
and so there is no point to calculate x5 using an
extension as it would be returned to the exact position as
x4.

Fig. 13 a) The initial n + 1 conditions (corresponding to x1, x2 and x3);
b) the worst performing iteration is reflected through a line connecting
the remaining two to give x4 (shown in black); c) the current
experimental set following the evaluation of x4 and subsequent
removal of x1.
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Accordingly the position of x5 can be calculated by taking
a reflection of x3 (the worst performing of the current
experimental set) through the centroid of the line connected
x2 and x4, giving the coordinates (Fig. 14):

x5 ¼
−75
−50

� �

This gives an evaluated performance of 122 500.
This lies directly in the corner of our allowable

optimisation space and so cannot be optimised further, given
the shape of the response curve in Fig. 12. However, in a live
experiment we would not know the response curve and thus
would not know that it would not be possible to optimise
beyond this point. The next steps therefore are to perform a
shrinking (as before an extension at this time can be avoided,
as x5 lies at the extremes of both parameters).

This would give the positions of two new iterations as
below:

x6 ¼ 1
2
x5 þ x2ð Þ

¼ 1
2

−75
−50

" #
þ

−50
−25

" # !

¼
− 62:5
− 37:5

" #

x7 ¼ 1
2
x5 þ x4ð Þ

¼ 1
2

−75
−50

" #
þ

−75
0

" # !

¼
−75
−25

" #

Which evaluate to 82 656.25 and 105 625, respectively. As x5 is
still the best performing, another shrinking is performed to
give the conditions for more iterations. This process is
repeated until your convergence criterion is met, with x5
giving the best results in this example no matter how
stringent a value ξ is assigned.

Applying to a synthetic environment

While the worked example above is purely mathematical, it is
relatively straightforward to transfer the process into a

chemical environment. Such a well-defined governing
equation that was optimised (eqn (8)) of course does not exist
in a reaction context; however, we do not need it to. It's
possible to treat the reaction itself as a ‘black box’ function
where inputs (reaction parameters such as temperature) give
a defined output (e.g. yield or conversion) which can be
measured using in-line or on-line detectors such as the
Mettler-Toledo FlowIR39 or an LCMS stack.

By following the complex method process, new input
conditions will be generated after which detector feedback
can be fed into the evaluation function to determine how well
a certain iteration has performed (e.g. by calculating a ratio
between products and starting materials), driving the
systematic generation of new iterations to try.

Material covered in the first sections of this paper can be
used to connect to reaction equipment such as pumps,
reactor systems and detectors to control parameters and
gather information necessary for optimisation. Indeed, for all
cases of our own reported self-optimisation work this process
was followed.15,17

Conclusions

To derive most benefit from the above Tutored Discourse, we
would now encourage transfer of this knowledge to real-time
experimentation to build confidence and trust in the systems.
Only through this increased exposure and practice can the
capabilities and opportunities be fully recognised to lead to
future innovations in autonomous reaction control and
discovery. Eventually all these systems should be available
through open-source40 repositories, such as GitHub, and
managed through normal electronic laboratory notebook
(ELN) methods.
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