Mechanofluorochromic carbon dots under grinding stimulation†
Abstract
The exploration of new hotspot nanomaterials to acquire mechanofluorochromic (MFC) properties has drawn substantial interest. However, previously reported MFC nanomaterials have required external pressures on the level of gigapascals, and observing distinct reversible MFC phenomena in nanomaterials under low-pressure conditions is still a challenge. Herein, a kind of reversible MFC-carbon dots (CDs) under low pressure has been reported for the first time. The MFC-CDs exhibited an apparent solid-state fluorescence color change, with emission shifting from green to blue via anisotropic grinding, owing to the alteration of hydrogen bonds and stacking structure among the CDs. Notably, these MFC-CDs exhibited a reversible fluorescence resulting from their being treated with acid vapors. This reversibility was indicated from X-ray diffraction analysis to be due to recovery of the crystalline state. The results highlighted the relationship between reversible MFC properties and structure, and showed the utility of these MFC-CDs as security films for further applications.