Issue 2, 2020

Efficient reductive amination of HMF with well dispersed Pd nanoparticles immobilized in a porous MOF/polymer composite

Abstract

Aminated derivatives of 5-hydroxymethylfurfural (HMF) and furfural are critical intermediates for the pharmaceutical industry. The state-of-the-art catalysts currently used for these syntheses are mostly homogeneous in nature, motivating the design of recyclable, heterogeneous catalytic systems. As such, the present study illustrates a new method for the design of metal–organic framework (MOF)/polymer composites containing well-defined metal nanoparticles in a sustainable way. One such palladium functionalized MOF/polymer composite is then employed in the reductive amination of HMF under mild conditions. The catalyst shows excellent activity, including a high TON/TOF (h−1) of 604.8/302.4 and ∼94% amine yield, which is maintained over a larger number of reaction cycles (up to 15) when compared to several state-of-the-art materials, such as a commercial Pd/C (3 cycles). It is thought that the origin of the improved catalyst recyclability is due to the added polymer, poly-para-phenylenediamine (PpPDA), which helps to prevent the aggregation and leaching of the palladium nanoparticles. The synthetic approach is further extended to design other potential catalysts with different metallic nanoparticles (NPs).

Graphical abstract: Efficient reductive amination of HMF with well dispersed Pd nanoparticles immobilized in a porous MOF/polymer composite

Supplementary files

Article information

Article type
Paper
Submitted
06 Sep 2019
Accepted
08 Nov 2019
First published
22 Nov 2019

Green Chem., 2020,22, 368-378

Efficient reductive amination of HMF with well dispersed Pd nanoparticles immobilized in a porous MOF/polymer composite

V. V. Karve, D. T. Sun, O. Trukhina, S. Yang, E. Oveisi, J. Luterbacher and W. L. Queen, Green Chem., 2020, 22, 368 DOI: 10.1039/C9GC03140E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements