Heat stability of emulsions using functionalized milk protein concentrate generated by supercritical fluid extrusion
Abstract
In this study, thermostable oil-in-water emulsions containing high protein contents were developed using milk protein concentrate (MPC) that was functionalized by supercritical fluid extrusion (SCFX) processing at low temperature and shear. Functionalized MPC (f-MPC) emulsions (3% protein–80% oil and 10% protein–50% oil) were compared with emulsions stabilized by commercial MPC (c-MPC), sodium caseinate (NaCas), and a commercial mayonnaise for their emulsifying properties and heat stability at 70 and 90 °C for 30 min, and 121 °C for 15 min. Zeta-potentials and interfacial protein concentrations of f-MPC emulsions were higher than that of c-MPC emulsions. f-MPC emulsions remained stable against creaming for at least 8 weeks at room temperature (23 °C), while their c-MPC counterparts showed significant creaming at the same conditions. Even after heating at 121 °C for 15 min, f-MPC emulsions retained their structural integrity as observed from their confocal images, droplet size distributions, and viscosities. In contrast, c-MPC emulsions and mayonnaise disintegrated upon heating at 121 °C for 15 min, and oil droplets of mayonnaise partially coalesced during heating at 90 °C for 30 min. f-MPC emulsions revealed higher viscosities compared to c-MPC emulsions, providing them improved stability. Viscosities of f-MPC emulsions were not significantly affected by heating at 90 °C for 30 min, while other emulsions exhibited a substantial increase in their viscosities due to protein denaturation and aggregation. Thus, f-MPC emulsions can be utilized in the development of protein-enriched functional foods (e.g., spreads) that are stable against high heat treatments.