Issue 11, 2020

Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte

Abstract

Predictive knowledge of ion transport in electrolytes which bridges microscopic and macroscopic length scales is imperative to design new ion conductors and to simulate device performance. Here, we employed a novel approach combining operando X-ray photon correlation spectroscopy, X-ray absorption microscopy, continuum modelling, and molecular dynamics simulations to probe the ion transport in a baseline polymeric lithium-ion battery electrolyte. In a Li/PEO–LiTFSI/Li symmetric cell under polarization, we determined and rationalized microscopic properties including local electrolyte velocities and ion correlations and connected this insight to measured and simulated macroscopic ion concentration gradients. By relating our results across length scales, we suggest a fairly concentration-independent transference number of about 0.2. Our study shows the broad applicability of operando X-ray photon correlation spectroscopy to the understanding of dynamic phenomena.

Graphical abstract: Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte

Supplementary files

Article information

Article type
Paper
Submitted
11 Jul 2020
Accepted
15 Sep 2020
First published
15 Sep 2020

Energy Environ. Sci., 2020,13, 4312-4321

Author version available

Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte

H. Steinrück, C. J. Takacs, H. Kim, D. G. Mackanic, B. Holladay, C. Cao, S. Narayanan, E. M. Dufresne, Y. Chushkin, B. Ruta, F. Zontone, J. Will, O. Borodin, S. K. Sinha, V. Srinivasan and M. F. Toney, Energy Environ. Sci., 2020, 13, 4312 DOI: 10.1039/D0EE02193H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements