Does geometry matter? Effect of the ligand position in bimetallic ruthenium polypyridine siblings†
Abstract
In this work, we present the preparation of a complex [(tpy)(bpy)Ru(μ-CN)Ru(py)4(OH2)](PF6)3 (tpy = 2,2′,6′,2′′-terpyridine; bpy = 2,2′-bipyridine; py = pyridine) that combines a ruthenium chromophore linked to another ruthenium ion that bears a labile position trans to the bridge. Substitution in this position is very attractive, as it allows us to place a quencher trans to the chromophore maximizing the separation between them. This complex allowed us to prepare a family of cyanide-bridged ruthenium polypyridines of general formula [Ru(tpy)(bpy)(μ-CN)Ru(py)4(L)]2/3+ (L = Cl−, NCS−, 4-dimethylaminopyridine or acetonitrile) and compare them with the related complexes [Ru(tpy)(bpy)(μ-CN)Ru(bpy)2(L)]2/3+ where the L ligand lies cis to the bridge. The mixed-valence form of these complexes shows evidence of strong coupling between the ruthenium ions and enhanced delocalization as the redox potential of the {Ru(py)4L} fragment increases. (TD)DFT calculations reproduce very well the experimental spectra of these complexes and indicate that when L = acetonitrile, the hole in the mixed-valence complex is almost equally distributed between both ruthenium ions. For L = DMAP and NCS− the π orbitals of the ligands are mixed with dπ orbitals of the Ru ions, resulting in partial delocalization of the charge on the ligands. The latter result illustrates that the trans configuration of these complexes is well-suited to extend the interaction beyond the bridged ruthenium ions.