Issue 10, 2020

Chemical and photochemical behavior of ruthenium nitrosyl complexes with terpyridine ligands in aqueous media

Abstract

The synthesis and behavior in water of a set of various cis(Cl,Cl)-[R-tpyRuCl2(NO)](PF6) and trans(Cl,Cl)-[R-tpyRuCl2(NO)](PF6) (R = fluorenyl, phenyl, thiophenyl; tpy = 2,2′:6′,2′′-terpyridine) complexes are presented. In any case, one chlorido ligand is substituted by a hydroxo ligand and the final species arises as a single trans(NO,OH) isomer, whatever the nature of the starting cis/trans(Cl,Cl) complexes. Six X-ray crystal structures are presented for cis(Cl,Cl)-[thiophenyl-tpyRuCl2(NO)](PF6) (cis-3a), trans(Cl,Cl)-[thiophenyl-tpyRuCl2(NO)](PF6) (trans-3a), trans(NO,OH)-[phenyl-tpyRu(Cl)(OH)(NO)](PF6) (4a), trans(NO,OH)-[thiophenyl-tpyRu(Cl)(OH)(NO)](PF6) (4b), trans(NO,OEt)-[phenyl-tpyRu(Cl)(OEt)(NO)](PF6) (5a), and trans(NO,OH)-[phenyl-tpyRu(Cl)(OEt)(NO)](PF6) (5b) compounds. The different cis/trans(Cl,Cl) complexes exhibit an intense low-lying transition in the λ = 330–390 nm range, which appears to be slightly blue-shifted after Cl → OH substitution. In water, both cis/trans(Cl,Cl) isomers are converted to a single trans(NO,OH) isomer in which one chlorido- is replaced by one hydroxo-ligand, which avoids tedious separation workout. The water stable trans(NO,OH)-species all release NO with quantum yields of 0.010 to 0.075 under irradiation at 365 nm. The properties are discussed with computational analysis performed within the framework of Density Functional Theory.

Graphical abstract: Chemical and photochemical behavior of ruthenium nitrosyl complexes with terpyridine ligands in aqueous media

Supplementary files

Article information

Article type
Paper
Submitted
20 Dec 2019
Accepted
11 Feb 2020
First published
14 Feb 2020

Dalton Trans., 2020,49, 3138-3154

Chemical and photochemical behavior of ruthenium nitrosyl complexes with terpyridine ligands in aqueous media

P. Labra-Vázquez, M. Bocé, M. Tassé, S. Mallet-Ladeira, P. G. Lacroix, N. Farfán and I. Malfant, Dalton Trans., 2020, 49, 3138 DOI: 10.1039/C9DT04832D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements