Issue 43, 2020

Selective adsorption of monovalent cations in porous electrodes

Abstract

To clarify the mechanisms involved in the electrochemical adsorption of ions of aqueous electrolytes in porous electrodes, we performed molecular dynamics simulations of systems composed of porous carbon electrodes with various pore sizes and aqueous solutions containing a Li+, Na+, K+, or Cs+ cation and a Cl anion. The free energy barrier preventing the cation from entering the pore in the electrode and the hydration structure around the cation were calculated for each cation species and each pore size of the electrode. As the cation moved toward the porous electrode from the bulk electrolyte, rearrangement of the hydration network occurred. The energetic cost of this rearrangement of the hydration network was identified as the cause of the free energy barrier. We estimated the likelihood of cations becoming adsorbed by the porous electrode for different pore sizes and applied voltages and found that the specificity of the magnitude of the free energy barrier for different ions is determined by two factors: ion size (Li+ < Na+ < K+ < Cs+) and the strength of hydration (Li+ > Na+ > K+ > Cs+). With no or a low applied voltage, the ion size dominates the selectivity, and with a high applied voltage, the strength of hydration dominates, although there were some exceptions. The ion specificity of the free energy barrier could be utilized in the selective adsorption of ions from multi-component electrolytes by controlling the pore size of the electrode and the applied voltage.

Graphical abstract: Selective adsorption of monovalent cations in porous electrodes

Article information

Article type
Paper
Submitted
19 Aug 2020
Accepted
21 Oct 2020
First published
26 Oct 2020

Phys. Chem. Chem. Phys., 2020,22, 25184-25194

Selective adsorption of monovalent cations in porous electrodes

K. Kiyohara, Y. Yamamoto and Y. Kawai, Phys. Chem. Chem. Phys., 2020, 22, 25184 DOI: 10.1039/D0CP04396F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements