Issue 48, 2020

Molecular simulation of osmometry in aqueous solutions of the BMIMCl ionic liquid: a potential route to force field parameterization of liquid mixtures

Abstract

Despite widespread development and use of ionic liquids (ILs) in both academic and industrial research, computational force fields (FFs) for most of those are not available for a precise description of inter-species interactions in aqueous environments. In the scope of this study, by means of molecular simulations, the osmotic coefficient of an aqueous solution of an IL is calculated and used as a basis to reparameterize popular IL-FFs existing in the literature. We first calculate the osmotic coefficients (at 298.15 K and 1 atm pressure) of aqueous solutions of 1-butyl-3-methylimidazolium chloride (BMIMCl), a generic IL, popularly used in biomass processing and the subsequent conversion to value-added intermediates. The performance of two popular atomic, nonpolarizable FFs developed for BMIMCl, one by Lopes, Pádua, and coworkers (FF-LP) and the other by Sambasivarao, Acevedo, and coworkers (FF-SA), when mixed with the SPC/E water model, is tested with respect to their ability to reproduce the experimental osmotic coefficient data. Interestingly, the osmotic coefficient is found to be increasing with a gradual increase in IL molality within the concentration range of our investigation, which is contrary to the experimental trend reported in the literature for the same IL–water mixture. Henceforth, necessary corrections to the nonbonded ion–ion and ion–water interactions are made to match the experimental osmotic coefficient. To further assess the reliability of the new FF, we extensively explore the thermodynamic (density, isothermal compressibility, and thermal expansion coefficient), dynamic (diffusivity and viscosity), and association/dissociation properties (rationalized with the help of radial distribution functions) with both the original and reparameterized FF for a wider range of concentrations up to a molality of 18.50 mol kg−1. The calculated quantities are compared against experimental data wherever available. The modified FF parameters exhibit significant improvements in terms of its ability to match experimental solution properties, such as density, viscosity, association/dissociation, etc. We report that excessive dissociation of BMIMCl in water is responsible for the shortcomings observed in the original FFs and improved prediction of physicochemical properties could be achieved using the modified FFs.

Graphical abstract: Molecular simulation of osmometry in aqueous solutions of the BMIMCl ionic liquid: a potential route to force field parameterization of liquid mixtures

Supplementary files

Article information

Article type
Paper
Submitted
19 Jul 2020
Accepted
14 Nov 2020
First published
17 Nov 2020

Phys. Chem. Chem. Phys., 2020,22, 28325-28338

Molecular simulation of osmometry in aqueous solutions of the BMIMCl ionic liquid: a potential route to force field parameterization of liquid mixtures

D. Dhabal and T. Patra, Phys. Chem. Chem. Phys., 2020, 22, 28325 DOI: 10.1039/D0CP03833D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements