Issue 39, 2020

New theoretical insights into the reaction kinetics of toluene and hydroxyl radicals

Abstract

Toluene's removal mechanism in the atmosphere is mainly attributed to the OH radical, which includes major OH-addition and minor H-abstraction reactions. The cresols and RO2 derived from OH-adducts reacting with O2 have significant impacts on the generation of secondary organic aerosols (SOA) and O3. However, computed branching ratios of various OH-adducts at various theoretical levels are largely inconsistent, mainly because previously reported barrier heights of the OH-addition reaction showed a strong method dependence. In the present study, we demonstrate that this reaction involves a nonnegligible anharmonic effect (during the process of movement of OH to the benzene ring), which has been overlooked by previous studies. The reaction kinetics of toluene + OH was systematically studied by a high-level quantum chemical method (CCSD(T)-F12/cc-pVQZ-F12//B2PLYP-D3/6-311++G(d,p)) combined with RRKM/master equation simulations. The particle-in-a-box approximation was used to treat the anharmonicity in this system. The final total rate coefficient is calculated to be 3.02 × 10−12 cm3 molecule−1 s−1 at 300 K and 1 atm. The main products for toluene + OH are computed as ortho-adducts (69.8%), benzyl radical + H2O (11.9%), ipso-adduct (7.3%), para-adduct (5.1%), and meta-adduct (5.1%). Our results indicate that both high level quantum chemical calculations for the crucial barrier heights and appropriate treatments for the anharmonicity determine the accuracy of the final computed total rate coefficients and branching ratios. Further analysis of the branching ratios of various reaction channels provides insight into the atmosphere-initiated oxidation of toluene.

Graphical abstract: New theoretical insights into the reaction kinetics of toluene and hydroxyl radicals

Supplementary files

Article information

Article type
Paper
Submitted
03 Jun 2020
Accepted
04 Sep 2020
First published
07 Sep 2020

Phys. Chem. Chem. Phys., 2020,22, 22279-22288

New theoretical insights into the reaction kinetics of toluene and hydroxyl radicals

X. Wu, C. Huang, S. Niu and F. Zhang, Phys. Chem. Chem. Phys., 2020, 22, 22279 DOI: 10.1039/D0CP02984J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements