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Both thermodynamic and kinetic insights are needed for a proper
analysis of association and dissociation processes of host—guest inter-
actions. However, kinetic descriptions of supramolecular systems are
scarce in the literature because suitable experimental protocols are
lacking. We introduce here three time-resolved methods that allow for
convenient determination of kinetic rate constants of spectroscopically
silent or even insoluble guests with the macrocyclic cucurbit[n]uril
family and human serum albumin (HSA) protein as representative hosts.

It has become clear that not only thermodynamic characteristics,
e.g., binding affinities, but also the assessment of kinetic para-
meters (e.g, complexation and decomplexation rates) is required
to obtain a full picture of supramolecular systems.'™ For instance,
kinetic rate constants of supramolecular complexes are key para-
meters for understanding catalysis® and protein-ligand binding
mechanisms,®® and stimuli-responsive materials.'">"" The design
of out-of-equilibrium systems also requires knowledge of both K,
values and rate constants.">"> However, except for CEST-active® or
slowly equilibrating systems that can be monitored by NMR (e.g,
DOSY, EXSY, inversion recovery),”'®° kinetic rate constants of
supramolecular systems are experimentally mostly only available
for chromophoric or emissive systems.>**'">* These experiments
are typically conducted as time-resolved direct host-guest binding
titration assays, herein abbreviated as kinDBA (Fig. 1a). In some
cases, single molecule measurements with nanopores allowed
for assessing the kinetic rate constants for complexation and
decomplexation of entrapped host-guest complexes.'>?>*2>
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Fig. 1 Working principles of supramolecular assays for the determination
of complexation rates (k;,) and decomplexation rates (kou) of host—guest
complexes. (a) Known direct-binding assay that is limited to spectroscopically
active host or guests. (b) and (c) Herein introduced competitive kinetic guest-

displacement-assay (kinGDA) and kinetic indicator-displacement-assay
(kinIDA) that are applicable also to spectroscopically silent guests.

Conversely, binding affinities (K,) of host-guest complexes can
be obtained for a wide range of hosts and guests by several
different techniques, for instance, through NMR titrations and
calorimetric measurements (ITC) as representative direct-
binding assays**?® or competitive-binding assays such as the
indicator-displacement assay (IDA)**?° and the recently by us
introduced guest-displacement assay (GDA).>° Consequently,
there is a strong mismatch between the number of reported
binding affinities and kinetic parameters for any class of host-
guest complexes. For instance, a survey for the cucurbit[z]uril
(CBn)*"** macrocyclic hosts (see Fig. 2 for their structure) on the
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Fig. 2 Chemical structures of hosts, fluorescent indicator dyes, and guests used in this study.

supramolecular repository “SupraBank.org” revealed that only
3% of all entries for CBn-guest complexes included also kinetic
rate constants, in agreement with the much larger number of K,
values versus kinetic parameters tabulated in reviews.

Herein, we show three novel competitive approaches through
which kinetic rate constants of host-guest complexes, namely
the complexation rate (k;,) and decomplexation rate (kou) con-
stants, can be accessed for spectroscopically silent guests. A
competitive binding network consisting of a host (H), guest (G),
and indicator dye (D) - see Fig. 1 - can be described both by
thermodynamic® and by kinetic equations (see ESIT for details).
The binding affinities of the host-dye (H>D) and host-guest
(H>G) complex are denoted as Ki° and K% ©, respectively. The
complexation & decomplexation rate constants of the HoD and
H>G complexes are symbolised by Ki° & ki and KL° & kG,
respectively. Note that an “Sy1’-type, ie., purely dissociative
mechanism for the decomplexation step of the HOG and HoD
complexes is implied by kinetic eqn (1)—(3).

HG+D 2 HD +G (1)
KHG KHD
H+G — HG H+D =— HD )
kit e
kHD/kout K kHG/kout (3)
I, = I° + I'°.[HD], + I°-[D], (4)

Eqn (3) shows how the thermodynamic and kinetic parameters,
ie., affinity and rate constants, are coupled to each other. The
mathematical expression for the background-corrected observable
signal intensity I, at time ¢ is given by eqn (4), assuming that both
the host and guest are spectroscopically silent. To kinetically
characterize a supramolecular host-guest complex, it is, therefore,
the task to obtain Ki° & k5 by fitting an experimentally obtained
signal-time curve of a non-equilibrated competitive binding net-
work involving the host, guest, and dye.

The first, a conceptionally most intuitive method introduced
here is the time-resolved guest-displacement assay, kinGDA.
Fig. 3a shows the kinGDA traces that were obtained when the
ultra-high-affinity dye MPCP** was added to a solution of
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Fig. 3 Kinetic traces of (a) CB8 >nandrolone (1 pM) and MPCP (50 puM)
(@, — fitting for kinGDA and — fitting for kinGDA"™®), (b) CB7, nandrolone
and BE (all 2 uM) either in kinGDA (@, — fitting) or kinIDA (@, — fitting)
mode, (c) HSA (20 uM), PBZ (40 pM) and warfarin (100 pM) in PBS in
kinGDA mode (@, — fitting), (d) CB7 (2 uM), nandrolone (2 uM) and MDAP
(25 uM, @, — fitting) or BE (50 uM, @, — fitting), in sodium phosphate
buffer (50 mM) in kinGDAPT® mode. T = 25 °C. See ESI¥ for details.

spectroscopically silent CB8 > nandrolone complex. During the
re-equilibration, nandrolone leaves the CB8 cavity, making
room for the inclusion of indicator dye MPCP, which is the
stronger binding guest. The detectable rate depends on (i) the
concentrations of the host, guest, and dye, (ii) the rate constants
KL and kb of the dye, which can be determined by a kinetic
direct-binding assay (kinDBA) (see Table S3 and Fig. S2, S6-S8,
S18, S24, S28, and S33, ESIt), and (iii) on the unknown rate
constants k¢ and ki of the spectroscopically silent guest. The
rate constants 2° and 1S can then be extracted from the time-
resolved kinGDA curves through a mathematical f1tt1ng Because
the goodness of the fit improves when K¢ = kinC/khe is used
as an input parameter, prior K5 ° determination, e.g., through
competitive binding titrations such as GDA or IDA or direct

This journal is © The Royal Society of Chemistry 2020
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Table1 Experimental kin, kout and log K, for host—guest and protein—ligand
complexes determined by kinGDA, kinlDA and kinGDAP™® in aqueous media

log
Guest” Host® kiS/s™t M~ kHG s~ Method?  (KyM™)
4-MBA CB6° 3.3 x 10* 6.5 x 10* kinIDA? 7.7
Cholesterol cB7/ 7.0 x 10 8.7 x 1072 kinGDA®  5.9"
7.0 x 10" 8.7 x 107* kinGDAFF0¢
Estradiol CB7 4.2 x 10* 2.0 x 10> kinGDA? 6.3"
43 x10° 2.1 x 107> kinGDA"O¢
(+)-Fenchone  CB7' 9.2 x 10 3.2 x 10 * kinGDA®  7.5°
Norcamphor ~ CB7' 1.5 x 107 9.8 x 10> kinGDA®  8.2°
Adamantanol  CB7/ 1.7 x 10° 6.6 x 10~ °® kinIDA® 10.4°
CB8/ 1.2 x 107  1.97 kinGDA* 6.8’
1.2 x 107 1.92 kinGDAPTO*
Nandrolone™  CB7" 4.1 x 10° 3.6 x 10™* kinGDA® 7.1°
45 x 10° 4.1 x 10" kinIDA®
CB7’ 2.3 x 10° 2.0 x 10™* kinGDA®  7.1°
2.4 x 10° 2.1 x 10™* kinGDA*F°¢
CB7? (9 x 10%) (8 x 10™*) kinGDA' 7.1°
(9 x10*) (8 x 10™*) kinGDAF*°*
CB7" 3.0 x 10° 3.7 x 10> kinGDA*©¢ 5.2°
2.5 x 10° 3.1 x 1072 kinGDA*™°*
CBS 1.1 x 107 6.8 x 102 kinGDA* 8.2"
1.1 x 107 7.1 x 1072 kinGDAPTOX
Prednisolone CBS 1.6 x 10° 1.1 kinGDAF 6.2°
1.5 x 10° 1.1 kinGDAPTO*
Testosterone ~ CB8 6.4 x 10° 5.8 x 107> kinGDA* 8.0°
6.4 x10° 5.8 x 10°* kinGDA™"°*
Ferrocenyl CB8/ 2.1 x 10" 5.8 kinGDA* 6.6/
methanol 2.0 x 107 5.7 kinGDAPTO*
Phenylbutazone HSA* 6.6 x 10> 1.0 kinGDA” 5.8"

Errors (StDev) from triplicate experiments are <30% in kin> and kows,

see Table S3 (ESI). If not stated otherwise experiments were conducted
in deionized water at 25 °C. Minor to no differences in guest binding
kinetics have been found for non-desalted and desalted hosts. “ See
Fig. 2 for chemical structures. ? See Table S3 (ESI) for indicator kinetics.
°In deionized water with 8.23 uM HCL ? DSMI as dye. ¢ See ESI for
details.” H,0/ethanol (99.9/0.1; v/v) mixture. ¢ BE as dye. " See ref. 30.
" In water freshly distilled three times from dilute KMnO, solution.
J Desalted CB7/CB8. * MPCP as dye. ' Determined by ITC.™ CB7
(2 pM), nandrolone (log (KE¥9/M™") = 7.04;* 2 uM). " Dye (2 puM). © See
ref. 40.7 Dye (50 pM). ? Dye (40 pM) likely associative mechanism also
present, see text. " BE (50 pM) or MDAP (25 uM) in sodium phosphate buffer
(50 mM). ® Calculated using the formula presented in ref. 41. - MDAP as dye.
“ In phosphate buffered saline (PBS). ” Warfarin as dye.

binding assays (DBA) is recommended. Several host-guest pairs
(Fig. S1-S34, ESIT) were analysed in this way, see Table 1. Note
that the kinGDA method is extendable for determining the
decomplexation rates of insoluble guests such as estradiol
through precomplexation, e.g., see Table 1 for the rate constants
K6 and kb for the CB7 D estradiol complex and Fig. $16 (ESIt)
for the kinetic trace and fit. The applicability of kinGDA to
insoluble guests is an asset it shares with the thermodynamic
GDA method.*® The concept is transferable to protein-ligand
interactions, as exemplified for human serum albumin (HSA) as
a biological important carrier protein®'** that is commercially
available.*>*® Fig. 3c demonstrates the determination of the
kinetic rate constants for the binding of the anti-inflammatory
drug phenylbutazone®**® (PBZ) to HSA by kinGDA.

The second competitive kinetic method, the pseudo-first
order kinGDA (kinGDA"™), has a close analogy to some literature
reports,'®*° and allows for measuring kb values without explicit
knowledge of the kinetic rate constants of the indicator dye.
Firstly, host and guest are equilibrated, followed by the spiked

This journal is © The Royal Society of Chemistry 2020
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addition of excess of a high-affinity dye. Use of excess of the
indicator allows for decoupling guest and dye rate constants for
(de)complexation through a pseudo-first order approximation
(see eqn (S15)-(S22), ESIt).

The kinetic trace is recorded and then fitted by a simple
exponential decay function

L =19+ 4 e ™*ai (5)
to yield the kinetic parameter ki of interest (I°Y - signal offset
at equilibration to HD; A - amplitude). The kii° value is then
obtained from 1S = NS kM6, In kinGDAPTO, knowledge of the
exact concentrations of the involved partners is not needed,
thus, kinGDAFF can often be the practical choice. However, it is
important to note that the applicability of kinGDA™™® is
restricted because ki[G], « kir’[D]o is required. Ideally, the
kinGDAP™® traces should overlay upon varying the dye con-
centration, excluding concentration-induced changes in the
binding mechanisms. For most of the CBn-guest complexes,
we found that the kinGDA™™ method is applicable. However, the
high dye concentrations required for kinGDA™® can cause unde-
sirable associative-binding contributions to Ho5 G decomplexation
mechanism. For example, at higher concentrations the dicationic
MDAP may form a (transient) ternary complex with charge-neutral
CB7>nandrolone in deionized water, causing an apparent
increase in ko, (Table 1). This scenario is plausible because
the decomplexation rate of CB7 > nandrolone strongly increased
in phosphate buffer (Fig. 3d), which implies formation of ternary
M"".CB7 > nandrolone complexes. (See ref. 37-39 for precedence
for M™.CBn>G complexes). Thus, ternary dye-CB7 Dguest com-
plexes are likely not present in buffered or saline aqueous media
and the high dye concentration needed for the kinGDA™ method
is of no concern (see Table 1).

Finally, a third competitive method, the time-resolved indicator
displacement assay (kinIDA), can be employed for obtaining
kinetic rate constants. In kinIDA, a pre-equilibrated host-dye
pair is mixed with the guest, to which the binding network
responds with dye displacement (Fig. 1c). Indeed, comparable
results were obtained for kinIDA and kinGDA for the system
composed of nandrolone (G), CB7 (H) and berberine (D), see
Fig. 3b.

The kinetic methods introduced herein provide meaningful
rate constants if the host-guest and host-dye displacement
mechanism follow a strict dissociative and not an additional,
occasionally observed,®® associative mechanism. Several tests
can be adopted to validate a dissociative mechanism. (i) kinGDA
can be conducted at different dye concentrations and should
yield similar K¢ and ki parameters. (ii) The kinGDA method
can be compared to the analogous kinIDA setup, see above. In
many cases, the competitive methods can circumvent the need
for stopped-flow equipment because the equilibration times in
the competitive assay format are much longer than in kinDBA.
Thus, kinetic characterizations of CBn-guest complexes can
now also be conducted in laboratories that do not have access
to specialized stopped-flow setups. For instance, the kinetic rate
constants for the CB7 O steroid and CB8 O steroid complexes can

Chem. Commun., 2020, 56, 12327-12330 | 12329
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Fig. 4 Correlation plot of Gibb's free energy (AG) of complex formation

versus Gibb's energy of activation (AG¥) for complexation (AG#) and
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ture data (see ESIt) for CB6-8 and HSA.

be determined in a cuvette equipped with a magnetic stirrer by a
standard fluorescence spectrometer. Conversely, explorative
kinGDA and kinIDA experiments for B-cyclodextrin complexes
with high-affinity guests such as adamantanol resulted in
equilibration times that were even too fast (<100 ms at
298 K) for our stopped-flow setup. The investigations of CBn
complexes and the protein-ligand complex HSADPBZ show
that kinGDA, kinGDA"*®, and kinIDA yield reliable fits for guest
egression rates ki < 10 s~ '. The kinetic rate constants that
became available through the use of presented methods were
converted alongside literature data to Gibb’s activation energies
by Eyring’s equation, see also eqn (S24), (S25) and Table S4 in
the ESLt The data displayed in Fig. 4 shows a clear decoupling
of thermodynamic and kinetic features for the CBn-guest and
HSA-guest complexes compiled, motivating future in-depth
analysis of these host-guest inclusion complexes. A first assessment
demonstrates that increased thermodynamic stability is not always
correlated to an increase in the kinetic inertness of the CBn-guest
complexes. In conclusion, it was shown that kinIDA, kinGDA, and
kinGDAF™® provide an experimental assessment of kinetic rate
constants of spectroscopically silent host-guest and protein-ligand
pairs. These methods will find use in the supramolecular and
protein community due to their ease and scope.
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