Issue 5, 2020

Designing logic gates based on 3-way DNAzyme complex

Abstract

In recent years, DNA has been regarded as a reliable raw material for building biological computers and biochips due to its nanoscale size, ultralow energy consumption, and high-performance computing potential. As the basis of building a biological computer, the research on the construction of nanoscale logic arithmetic and nanoscale biochemical logic circuits based on DNA molecules as carriers has attracted increasing attention. Although researchers use DNA strand replacement systems to achieve it this requires adjustment and careful design of the toehold, making sequence selection more difficult. To reduce dependence on the toehold, we propose a 3-way DNAzyme complex composed of three E6 DNAzymes assembled using the biological characteristics of E6 DNAzyme. This complex enriched the recognition vector of E6 DNAzyme, which can be used for multiple substrates, thus improving the reusability and efficiency of DNA molecules. At the same time, based on the 3-way DNAzyme complex and without the involvement of the toehold, we designed logic gates such as the OR gate, the AND gate, and the INHIBIT gate, and realized the construction of a new half subtractor and nanoscale biochemical logic circuit. These explorations and attempts extended the practicality of the 3-way DNAzyme complex. We believe that these logic elements will have a wide range of applications in DNA nanoscale programming, biological computing, and nanoscale medicine.

Graphical abstract: Designing logic gates based on 3-way DNAzyme complex

Supplementary files

Article information

Article type
Paper
Submitted
06 Nov 2019
Accepted
22 Dec 2019
First published
26 Dec 2019

Anal. Methods, 2020,12, 693-700

Designing logic gates based on 3-way DNAzyme complex

D. Liu, Y. Liu, B. Wang and Q. Zhang, Anal. Methods, 2020, 12, 693 DOI: 10.1039/C9AY02398D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements