Issue 4, 2020

Addressing the presence of biogenic selenium nanoparticles in yeast cells: analytical strategies based on ICP-TQ-MS

Abstract

Several organisms have demonstrated the ability of synthesising biogenic selenium-containing nanoparticles. Such particles from biological sources have attracted great attention due to several proven activities as antioxidants or antimicrobial agents. However, little is known in terms of size (distribution), shapes, chemical composition and number/amount/concentration of these particles. Therefore, in this work, we proposed the use of complementary analytical strategies that enabled the detection and characterization of selenium-containing nanoparticles in selenized yeast (Saccharomyces cerevisiae). The first strategy to address the intracellular presence of Se within yeast cells, involves the use of single cell ICP-TQ-MS (inductively coupled plasma-mass spectrometry). For this aim, selenium and phosphorous (as constitutive element) were measured as oxides (80Se16O+ and 31P16O+, resp.) in the triple-quadrupole mode. Then, a simple and fast cell lysis by mechanical disruption is conducted (approx. 30 min) in order to prove the presence of selenium-containing nanoparticles (SeNPs). The lysate is analysed by single particle ICP-TQ-MS and, complementarily, by liquid chromatography coupled to ICP-TQ-MS to cover a wider range of particle sizes. One of the samples revealed the presence of dispersed SeNPs with sizes between a few nm and up to 250 nm also confirmed by transmission electron microscopy (TEM) in the form of elemental selenium. The analysis of the certified reference material SELM-1 showed the presence of spherical SeNPs of 4 to 7 nm diameter. These biogenic particles, at least partially, were made of elemental selenium as well. The whole study reveals the excellent capabilities of “single” event ICP-MS methodologies in combination with HPLC-based strategies for a complete characterization of nanoparticulated material in biological samples.

Graphical abstract: Addressing the presence of biogenic selenium nanoparticles in yeast cells: analytical strategies based on ICP-TQ-MS

Supplementary files

Article information

Article type
Paper
Submitted
14 Aug 2019
Accepted
16 Dec 2019
First published
16 Dec 2019

Analyst, 2020,145, 1457-1465

Addressing the presence of biogenic selenium nanoparticles in yeast cells: analytical strategies based on ICP-TQ-MS

R. Álvarez-Fernández García, M. Corte-Rodríguez, M. Macke, K. L. LeBlanc, Z. Mester, M. Montes-Bayón and J. Bettmer, Analyst, 2020, 145, 1457 DOI: 10.1039/C9AN01565E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements