Issue 46, 2019

Physics of suction cups

Abstract

We have developed a theory of air leakage at interfaces between two elastic solids with application to suction cups in contact with randomly rough surfaces. We present an equation for the airflow in narrow constrictions which interpolates between the diffusive and ballistic (Knudsen) air-flow limits. To test the theory, we performed experiments using two different suction cups, made from soft polyvinylchloride (PVC), in contact with sandblasted polymethylmethacrylate (PMMA) plates. We found that the measured time to detach (lifetime) of the suction cups was in good agreement with theory, except for surfaces with a root-mean-square (rms) roughness below ≈1 μm, where diffusion of plasticizer from the PVC to the PMMA surface caused blockage of critical constrictions. The suction cup volume, stiffness, and elastic modulus have a huge influence on the air leakage and hence the failure time of the cups. Based on our research we propose an improved biomimetic design of suction cups that could show improved failure times with varying degrees of roughness under dry and wet environments.

Graphical abstract: Physics of suction cups

Article information

Article type
Paper
Submitted
19 Aug 2019
Accepted
16 Oct 2019
First published
17 Oct 2019

Soft Matter, 2019,15, 9482-9499

Physics of suction cups

A. Tiwari and B. N. J. Persson, Soft Matter, 2019, 15, 9482 DOI: 10.1039/C9SM01679A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements