Issue 28, 2019

Relative contributions of chain density and topology to the elasticity of two-dimensional polymer networks

Abstract

Understanding the relationships between the structure of polymer networks and their mechanical properties is important for the design of advanced soft materials with optimal properties. However, classical rubber elasticity theories often fall short in their description of the network structure, while simulation techniques at molecular scale remain impractical at that length scale. Here we develop a computational approach based on random discrete networks, in which the polymer network is represented as an assembly of non-linear springs connected at crosslinking points. The density of elastically-effective chains, average network coordination and chain contour lengths are varied independently in order to identify their respective contributions to the network elasticity. Numerical results suggest scaling relations between network parameters and elastic properties that are markedly different from the predictions of classical rubber elasticity theories. In particular, the elastic modulus of 2D random networks is found to be independent of density at constant topology, and proportional to the average coordination at constant density. The discrepancy is due to the pre-straining of the chains in the discrete network, which is not accounted for in classical models of rubber elasticity. Our results have implications for the interpretation of experimental data for ideal network gels that are formed by the cross-coupling of macromolecular building blocks in solution.

Graphical abstract: Relative contributions of chain density and topology to the elasticity of two-dimensional polymer networks

Article information

Article type
Paper
Submitted
18 Apr 2019
Accepted
24 Jun 2019
First published
25 Jun 2019

Soft Matter, 2019,15, 5703-5713

Relative contributions of chain density and topology to the elasticity of two-dimensional polymer networks

G. Alamé and L. Brassart, Soft Matter, 2019, 15, 5703 DOI: 10.1039/C9SM00796B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements