Cross-stream migration of a Brownian droplet in a polymer solution under Poiseuille flow
Abstract
The migration of a Brownian fluid droplet in a parallel-plate microchannel was investigated using dissipative particle dynamics computer simulations. In a Newtonian solvent, the droplet migrated toward the channel walls due to inertial effects at the studied flow conditions, in agreement with theoretical predictions and recent simulations. However, the droplet focused onto the channel centerline when polymer chains were added to the solvent. Focusing was typically enhanced for longer polymers and higher polymer concentrations with a nontrivial flow-rate dependence due to droplet and polymer deformability. Brownian motion caused the droplet position to fluctuate with a distribution that primarily depended on the balance between inertial lift forces pushing the droplet outward and elastic forces from the polymers driving it inward. The droplet shape was controlled by the local shear rate, and so its average shape depended on the droplet distribution.