Issue 12, 2019

Simulations of 3-arm polyelectrolyte star brushes under external electric fields

Abstract

Langevin dynamics (LD) simulations have been performed to study the conformations and stratification of grafted three-arm polyelectrolyte (PE) stars in response to external electric fields. The grafted chains with neutral stems and fully charged branches were immersed in a salt-free solution sandwiched between the grafting electrode and a second oppositely charged electrode. The branching points of neutral-stem PE brushes at low grafting densities exhibit a bimodal distribution normal to the grafting electrode. With increasing grafting density, the molecular conformations in the brush layer become more complex with the emergence of multi-mode distributions of the branching point monomers. Under strong electric fields, the fraction of grafted chains with either nearly completely stretched stems or collapsed branches onto the grafting electrode gradually decreases with increasing grafting density due to the stronger electrostatic screening from counterions and monomer charges at higher grafting densities. Simulation results revealed that a collapsing electric field promotes the stratification within the brush layer, leading to high degrees of charge overcompensation from charged monomers collapsed onto the oppositely charged grafting electrode. An approximate analytical self-consistent field model was developed to examine the stratification within the brush layer. Regarding the fraction of grafted chains with the free branches in the upper layer, the prediction of the analytical model qualitatively agrees with the simulation results.

Graphical abstract: Simulations of 3-arm polyelectrolyte star brushes under external electric fields

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2018
Accepted
16 Jan 2019
First published
17 Jan 2019

Soft Matter, 2019,15, 2560-2570

Simulations of 3-arm polyelectrolyte star brushes under external electric fields

F. Zhang, S. Wang, H. Ding and C. Tong, Soft Matter, 2019, 15, 2560 DOI: 10.1039/C8SM02131G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements