Issue 12, 2019

Dye-sensitized solar cells using fluorone-based ionic liquids with improved cell efficiency

Abstract

Six trihexyltetradecylphosphonium chloride (P6,6,6,14Cl) based ionic liquids (IL) with dianionic fluorone derivatives were synthesized with total exchange of chloride from the dianionic dye: Fluorescein (a), Rose Bengal (b), Phloxine B (c), Eosin B (d), Eosin Y (e) and Erythrosin B (f). Spectroscopic characterization of these viscous salts indicated the presence of the expected 1 or 2 strong absorption bands. A total of 12 compounds, as sodium (from a to f) or as trihexyltetradecylphosphonium dianion salts (from a′ to f′), were used for sensitization of nanocrystalline TiO2. Here, we report the sensitization activity of these metal free dyes in terms of current–potential curve, open-circuit potential, fill factor, and overall solar energy conversion efficiency which have been evaluated under 100 mW cm−2 light intensity. We developed a strategy to improve the light harvesting of these conventional dyes by simple cationic exchange which was accompanied by a minimum of 30% increase in the cell photovoltaic conversion efficiency. Also, for Eosin B the binding to TiO2 apparently allows reduction of the –NO2 electron-withdrawing group to –NO22−. This provides a new interaction between the reduced nitro group and the TiO2 surface, reflecting an improvement in the overall DSSC performance reaching its maximum of 0.65% efficiency after light DSSC soaking. Factors that improve DSSC performance like aggregate inhibition, increment of the electrode's quasi-Fermi level and slight red shift in the absorption spectra of the tested anionic dyes were achieved by simple cationic exchange.

Graphical abstract: Dye-sensitized solar cells using fluorone-based ionic liquids with improved cell efficiency

Supplementary files

Article information

Article type
Paper
Submitted
10 Sep 2019
Accepted
29 Sep 2019
First published
30 Sep 2019

Sustainable Energy Fuels, 2019,3, 3510-3517

Dye-sensitized solar cells using fluorone-based ionic liquids with improved cell efficiency

A. L. Pinto, A. J. Parola, J. P. Leal, I. B. Coutinho and C. C. L. Pereira, Sustainable Energy Fuels, 2019, 3, 3510 DOI: 10.1039/C9SE00783K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements