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Diphenylaminostyryl-substituted quinolizinium
derivatives as fluorescent light-up probes for
duplex and quadruplex DNA†

Avijit Kumar Das, Heiko Ihmels * and Sarah Kölsch

(E)-2-[1’-((Diphenylamino)styryl)quinolizinium (3a) and 2,2’-{(phenylimino)-bis[(E)-1’’,1’’’-styryl]}-bis[quin-

olizinium] (3b) were synthesized, and their interactions with duplex DNA and quadruplex DNA were

investigated with a particular focus on their ability to operate as DNA-sensitive fluorescent probes. Due to

the significantly different size and steric demand of these quinolizinium derivatives they exhibit different

binding modes. Thus, 3a intercalates into duplex DNA and binds through π stacking to quadruplex DNA,

whereas 3b favours groove binding to both DNA forms. The emission intensity of these compounds is

very low in aqueous solution, but it increases drastically upon association with duplex DNA by a factor of

11 (3a) and >100 (3b) and with quadruplex DNA by a factor of >100 (3a) and 10 (3b), with emission bands

between 600 and 750 nm.

Introduction

The detection of nucleic acids is an important tool in clinical,
forensic, and biological studies and applications.1 And among
the different chemical or biological tools that may be used for
DNA analysis,2 emission spectroscopy is one of the most versa-
tile and efficient methods.3 As a result, numerous fluorescent
probes have been reported that allow the staining as well as
qualitative and quantitative detection of DNA in cell-free
medium and in cells.4 Specifically, these molecular probes
that indicate the nucleic acid selectively with an increase in
the emission intensity upon association with the biomacro-
molecule (light-up probes) are very useful fluorimetric
markers.5 Along with the regular duplex DNA there is also an
increasing interest in the detection of non-canonical DNA
forms, with G-quadruplex DNA (G4-DNA) being the most pro-
minent one. As this DNA form is proposed to have essential
biological relevance and function,6 probes have been devel-
oped recently that enable its selective fluorimetric detection.7

In this context, it has been demonstrated that styryl dyes
with a cationic hetarene unit exhibit favourable properties for
DNA sensing:10–12 (i) the cationic charge of the dyes increases
the affinity of the probe to DNA;8 (ii) in donor–acceptor substi-
tuted styryl dyes ICT (intramolecular charge transfer) or TICT

(twisted intramolecular charge transfer) states are possible, and
these properties may change upon binding of the dye to DNA,
thus enabling sensitive detection; and (iii) the large Stokes
shifts in donor–acceptor substituted styryl dyes reduce the inter-
ference between excitation and detection light.8,9 As a result,
styryl dyes are widely used as probes in fluorescence-based bio-
analytical applications, specifically DNA staining.10–12

In our studies on the development of DNA-sensitive fluo-
rescent probes, we have demonstrated that annelated quinol-
izinium derivatives are versatile DNA-binding ligands that may
be used for fluorimetric detection.13 In addition, we have
shown that especially donor-substituted quinolizinium deriva-
tives have favourable photophysical properties and may there-
fore be used as versatile building blocks in fluorescent light-up
probes.14 Based on these observations we proposed that styryl-
substituted quinolizinium derivatives may also be promising
DNA-sensitive light-up probes with useful absorption and
emission properties. So far, only a few styrylquinolizinium
derivatives are known, and some of these have been already
applied for fluorimetric DNA detection.15 Among the deriva-
tives investigated so far, the aminostyryl-substituted quinoliz-
inium derivatives appeared to be the most promising candi-
dates as they exhibit the typical advantages of donor–acceptor
dyes. Therefore, we decided to vary this motif and employ a
diphenylaminostyryl substituent as a donor unit, because the
triarylamine unit is well known for its strong electron-donating
properties,16 and it was already shown to be a useful function-
ality in fluorescent chemosensors.17 Herein, we present the
synthesis of the resulting diphenylamino-substituted styryl-
quinolizinium derivatives 3a and 3b along with investigations
of their interactions with duplex and quadruplex DNA with a
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particular focus on their potential application as DNA-sensitive
fluorescent probes.

Results
Synthesis

The styrylquinolizinium derivatives 3a and 3b were synthesized
by a Knoevenagel-condensation18 of 2-methylquinolizinium
(1)19 with the mono- and diformyl-substituted triphenylamine
derivatives 2a and 2b20 in 70% and 67% yield, respectively
(Scheme 1). The chemical structures of the ligands were
confirmed by 1D and 2D 1H NMR and 13C NMR spectroscopy,
mass spectrometry and elemental analysis (cf. ESI†).

Absorption and emission properties

The absorption and emission properties of compounds 3a and
3b were investigated in different solvents, namely CH2Cl2,
CHCl3, CH3CN, MeOH, EtOH, DMSO and aqueous buffer at
pH 7. The absorption spectra of 3a and 3b display a long-wave-
length absorption maximum ranging from 450 nm (3a) and
473 nm (3b) in aqueous buffer to 500 nm (3a) and 512 nm (3b)
in CH2Cl2 (Table 1, Fig. S1†). In most solvents, the emission
intensity of derivatives 3a and 3b is very weak. Thus, in DMSO,
MeOH, CH3CN and buffer solution only a weak, broad emis-
sion band was observed between 600 and 750 nm, whereas in
the protic polar solvent EtOH the emission intensity at 695 nm
is slightly higher.

In contrast, both 3a and 3b show more intense emission in
the less polar, chlorinated solvents CHCl3 (3a: 638 nm, 3b:
620 nm) and CH2Cl2 (3a: 695 nm, 3b: 690 nm). In general, the
emission quantum yields in CHCl3 (Φfl = 0.34 and 0.27) are
higher as compared to those in CH2Cl2 (Φfl = 0.21 and 0.12)
(cf. ESI, Fig. S1, B1 and B2†).

To assess whether the low emission quantum yields of com-
pounds 3a and 3b are caused by conformational changes in
the excited state, the fluorescence spectra were recorded in
media of high viscosity, namely aqueous solutions with
increasing glycerol content.22 Whereas in aqueous solution
compounds 3a and 3b are basically non-fluorescent (Φfl ≈
0.002), an increasing content of glycerol (wt% glycerol: 0, 50,
100%) resulted in a large increase in the fluorescence
quantum yield (Φfl = 0.30 for 3a and Φfl = 0.14 for 3b), along
with a red shift of the absorption maxima from λabs = 450 nm
to 472 nm (3a) and λabs = 473 nm to 493 nm (3b) (Fig. S2†).

DNA binding properties

Spectrophotometric and spectrofluorimetric titrations. The
interactions of derivatives 3a and 3b with calf thymus (ct) DNA
and the quadruplex forming oligonucleotide d[A(GGGTAA)3GGG]
(22AG) were monitored by photometric and fluorimetric
titrations in BPE buffer solution (ct DNA) or in K-phosphate
buffer (22AG) at 20 °C and pH 7 (Fig. 1 and 2). In both cases,
the absorption spectrum of the quinolizinium derivatives 3a

Scheme 1 Synthesis of styrylquinolizinium derivatives 3a and 3b.

Fig. 1 Photometric titration of 3a (1) and 3b (2) with ct DNA (A, c =
1.88 mM in base pairs) in BPE buffer (10 mM, pH 7.0; solutions of ligands
with 10% v/v DMSO, cLigand = 20 µM) and with 22AG (B, c = 200 µM) in
K-phosphate buffer at pH 7.0 at 20 °C (cLigand = 20 µM). The arrows indi-
cate the changes of absorption upon addition of DNA. Inset: Changes of
the ligand absorption with increasing DNA concentration.

Table 1 Absorption and emission properties of 3a and 3b in different
solvents

Solvent λabs
a/nm lg εb λfl

c/nm λabs – λfl
d/cm−1 Φfl

e

3a
CHCl3 495 4.57 638 6993 0.34
CH2Cl2 500 4.56 695 5128 0.21
DMSO 458 4.55 725 3745 0.02
CH3CN 460 4.58 736 3623 0.01
EtOH 472 4.59 695 4484 0.04
MeOH 465 4.60 710 4081 0.01
Buffer f 450 4.12 660 4716 <0.01
3b
CHCl3 513 4.71 620 9345 0.27
CH2Cl2 512 4.65 690 5617 0.12
DMSO 480 4.75 740 3846 <0.01
CH3CN 480 4.77 738 3875 <0.01
EtOH 490 4.69 695 4878 0.03
MeOH 484 4.79 715 4329 0.02
Buffer f 473 4.23 682 4784 <0.01

a Long-wavelength absorption maximum; c = 10 µM. b ε = Molar extinc-
tion coefficient in cm−1 M−1. c Fluorescence emission maximum; 3a:
λex = 460 nm, 3b: λex = 500 nm. dDifference between absorption
maximum and emission maximum at lowest energy. e Fluorescence
quantum yield relative to rhodamine B in EtOH (Φfl = 0.7) (ref. 21). f In
10 mM BPE buffer solution at pH 7.0 and 20 °C.
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and 3b changed significantly upon addition of ct DNA and
22AG. Thus, upon addition of ct DNA to a solution of 3a or 3b,
the absorbance of these compounds firstly decreased with a
slight red shift on addition of ct DNA until ligand–DNA ratios
(LDR) of >1.4 (3a) and >0.2 (3b) were achieved. Further
addition of ct DNA led to an increase in the absorbance with a
red shift of the absorption maximum to 470 nm (Δλ = 20 nm;
3a) and 513 nm (Δλ = 40 nm, 3b) (Fig. 1A). On titration of
22AG to compounds 3a and 3b the absorbance at 450 nm (3a)
and 473 nm (3b) decreased until LDRs of >20 (3a) and >18.6
(3b) were achieved. At a higher concentration of 22AG (LDR
<0.4 and <0.7, resp.) a red shifted absorption peak was formed
at 480 nm (Δλ = 30 nm) (3a) and 505 nm (Δλ = 32 nm) (3b)
(Fig. 1B). The data from spectrophotometric titrations were
used to determine the binding constant, Kb, obtained from the
fitting of the experimental binding isotherms to the theoretical
model (cf. ESI, Fig. S3†).24 Thus, ligands 3a and 3b bind to ct
DNA with binding constants of Kb = 4.3 × 104 M−1 and Kb =
8.8 × 104 M−1.

The emission intensities of both compounds 3a and 3b
increased significantly in the presence of DNA (Fig. 2). Thus,
the addition of ct DNA and 22AG to derivative 3a resulted in a
continuous increase of the weak emission band by a factor of
30 (ct DNA, Φfl = 0.16) and 176 (22AG, Φfl = 0.26) and small

blue shifts (Δλ ≈ 20 nm) of the emission maximum (Fig. 2, A1
and B1).

Similarly, the weak emission of compound 3b increased by
factors of 128 and 10 on addition of ct DNA (Φfl = 0.40) and
22AG (Φfl = 0.13), respectively, and the emission maxima were
slightly blue shifted to 660 nm and 655 nm on addition of ct
DNA and 22AG (Fig. 2, A2 and B2). From the fluorescence titra-
tion experiments, the limit of detection (LOD) of 3a and 3b was
estimated to be 0.02 µM and 0.79 µM for ct DNA and 0.05 µM
and 0.01 µM for 22AG, respectively (cf. ESI, Table S1†).23

To check whether the fluorimetric analysis is disturbed by
the formation of singlet oxygen and subsequent DNA damage,
the irradiation of a 3b–DNA complex (LDR = 0.3) under aerobic
conditions was monitored by CD spectroscopy (cf. ESI,
Fig. S5†). Under these conditions, no significant changes in
the CD signals corresponding to the DNA absorption
(<300 nm) were observed, which indicates negligible changes
in the DNA structure after irradiation. In another experiment,
we examined the influence of oxygen on the excited singlet
state of 3b by recording emission spectra at different oxygen
concentrations. Namely, the spectra were measured under
anaerobic conditions, in air or in oxygen-saturated solution
under otherwise identical conditions (cf. ESI, Fig. S6†).
Notably, the fluorescence intensity of ligand 3b and of the 3b–
ct DNA complex is essentially independent of the oxygen con-
centration, which indicates that oxygen does not significantly
quench the excited singlet state.

CD- and LD-spectroscopic analysis

Complementary analysis with circular dichroism (CD) and flow
linear dichroism (LD) spectroscopy revealed that in the pres-
ence of ct DNA, ligands 3a and 3b display induced circular
dichroism (ICD) and LD bands in the absorption range of the
ligands (Fig. 3). A solution of ligand 3a with ct DNA exhibited
negative ICD bands at 247 nm, 310 nm, 420 nm and 500 nm,
all of which increased in intensity from LDR = 0.3 to 1.0. At
higher LDR values, however, the negative long-wavelength bands
at 420 nm and 500 nm developed into a very intense bisignate
band with zero transition at the absorption maximum.
Simultaneously, the initially intense positive CD signal of the
DNA at 278 nm decreased drastically (Fig. 3, A1). At the same
time, the addition of ct DNA to the solution of ligand 3a (LDR =
0–1.0) led to the formation of a gradually increasing negative
LD signal in the absorption region of the ligand (350–550 nm).
Notably, the intensity of the negative LD signal at 258 nm
decreased with increasing LDR values (Fig. 3, B1).

The complexation of compound 3b with ct DNA resulted in
the formation of positive ICD signals at 347 nm and 545 nm,
along with a negative signal at 460 nm. Up to an LDR value of
0.5, the intensities of the two very strong positive CD bands at
545 nm and 460 nm increased, but at a larger LDR of 1.0 these
CD bands decreased (Fig. 3, A2). The LD spectra of complexes
of 3b and ct DNA revealed a very strong positive band at
536 nm that increased from LDR = 0.3 to 0.5 and subsequently
disappeared at larger LDR = 1 in favour of a weak bisignate
band with maxima at 540 nm and 440 nm. Concurrently, very

Fig. 2 Fluorimetric titration of 3a (1) and 3b (2) (c = 10 µM) with ct DNA
(A, c = 1.88 mM) in BPE buffer (10 mM; solutions of ligands with 10% v/v
DMSO) and with 22AG (B, c = 200 µM) in K-phosphate buffer; pH = 7.0,
T = 20 °C, 3a: λex = 460 nm, 3b: λex = 500 nm. The arrows indicate the
changes of emission intensity upon addition of DNA. Inset: Plot of rela-
tive fluorescence intensity of 3a and 3b versus cDNA (corrected with
regard to the change of the absorption at the excitation wavelength).
Top: Pictures of emission color of 3a and 3b in the absence and pres-
ence of DNA.
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weak positive and negative LD signals were observed at
340 nm (+), 375 nm (−) and 440 nm (−) that strongly broad-
ened with increasing LDR values (Fig. 3, B2).

On addition of derivatives 3a and 3b to G4-DNA 22AG the
characteristic CD pattern of the hybrid-type structure of the
quadruplex, i.e. with positive bands at 290 nm and 270 nm
along with a negative band at 235,25 did not change essentially
(Fig. 3, C1 and C2). In the complex of 3a and 22AG, only a very
weak bisignate ICD band was observed with maxima at
345 nm (+) and 410 nm (−) (Fig. 3, C1). In contrast, more pro-
nounced ICD signals developed in the absorption range of the
derivative 3b upon addition of G4-DNA 22AG. Specifically, with
increasing LDR from 0 to 2.0, a positive band at 350 nm and
two very broad negative bands with maxima at 440 nm and
540 nm were observed (Fig. 3, C2). CD-spectroscopic analysis
was also performed to determine the influence of the associ-
ation of 3a and 3b on the quadruplex melting temperature,
Tm (cf. ESI, Fig. S7†). Thus, the determination of the DNA
melting temperature by monitoring the temperature-
dependent CD intensity revealed an increase in the melting
temperature, ΔTm, in the presence of the ligands (3a: ΔTm =
3 °C, 3b: ΔTm = 9 °C, at LDR = 2).

Discussion

The absorption and emission properties of 3a and 3b in
different solvents resemble the ones that have been reported
previously for styryl substituted quinolizinium derivatives.15d

Although the absorption and emission shifts of these com-
pounds are slightly different in various polar aprotic and polar
protic solvents (Table 1), there was no clear relationship identi-
fied between the absorption and emission energy and a particu-
lar solvent property. This observation indicates that several
solvent properties, such as polarity and hydrogen bonding, con-
tribute to the overall solvent effect to different extents. Notably,
in CH2Cl2 and CHCl3, derivatives 3a and 3b exhibit significant
red shifts of the absorption bands (Fig. S1†) which are fre-
quently observed for cationic dyes due to the high polarizability
of chloroalkane solvents.26 In addition, it should be considered
that these compounds are poorly soluble in these solvents,
which leads to dye aggregation. Thus, the red-shifted absorption
in these solvents may indicate the aggregate formation.27 The
emission intensity of 3a and 3b is very low in polar solvents
(<0.04), most likely due to the radiationless deactivation of the
excited state by conformational changes, such as rotation about
the vinyl–arene bond, as commonly observed for styryl dyes.28

This assumption was clearly supported by the observation that
the emission intensity increases with increasing viscosity of the
solution, namely in glycerol–water mixtures (cf. ESI, Fig. S2†), as
the rotational relaxation of the excited molecule becomes slower
than the fluorescence at higher viscosity. Presumably, the
slightly larger emission quantum yields of 3a and 3b in CHCl3
and CH2Cl2 (Φfl = 0.1 to 0.3) are the result of their low solubility
in these solvents and are thus caused by an aggregation-
induced enhancement of the emission intensity.29

The binding studies of 3a and 3b with ct DNA and 22AG by
photometric, fluorimetric and polarimetric titrations clearly
confirmed the association of these ligands with DNA. Firstly,
the photometric titrations show a development of absorption
bands that is characteristic of DNA-binding ligands, i.e. a
hypochromic effect along with a red shift of the absorption
band with progressing titration of DNA.30 Nevertheless, the
lack of isosbestic points and the appearance of two distinctly
different sections of the titration (Fig. 1) point to different
binding modes that depend on the LDR. Thus, at the begin-
ning of the titration, i.e. at large LDR values, the ligands form
aggregates along the DNA backbone because there are not
enough binding sites available. At smaller LDR values, i.e. with
ample number of binding sites, the ligands may associate with
the DNA by intercalation or groove binding. Notably, the steri-
cally demanding diphenylamino-substituent severely hinders
the access of a ligand close to an already occupied DNA
binding site, which explains the large amount of DNA required
to reach saturation. Unfortunately, this heterogeneous binding
of both ligands with duplex and quadruplex DNA, that even
changes in the course of the titrations, seriously hampers the
determination of meaningful binding constants from the
binding isotherms, as the ones calculated only reflect an
apparent binding constant, i.e. an average constant from all

Fig. 3 CD spectra (A) and LD spectra (B) of ct DNA (c = 50 μM) in the
absence and presence of 3a (1) and 3b (2) at LDR = 0 (black), 0.3 (red),
0.5 (blue), 0.6 (magenta), 0.8 (green), 1.0 (orange), 1.5 (cyan), 2.0 (violet)
in BPE buffer solution (10 mM, pH 7.0; solutions of ligands with 10% v/v
DMSO). CD spectra of 22AG (c = 20 μM) in the absence and presence of
3a (C1) and 3b (C2) at LDR = 0 (black), 0.5 (blue), 1.0 (orange), 2.0 (violet)
in K-phosphate buffer at pH 7 at 20 °C (solutions of ligands with 1%
DMSO).
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contributing binding modes, thus showing different overall
affinities of the ligands toward a particular DNA form. Hence,
the apparent binding constants of ligands 3a and 3b with ct
DNA show a higher overall affinity of 3b to this DNA form. The
Kb values (3a: Kb = 4.3 × 104 M−1, 3b: Kb = 8.8 × 104 M−1) differ
only by a factor of ca. 2 and are both comparable to the ones
obtained for classical intercalators.30

Additional information about the binding mode was
obtained by CD- and LD-spectroscopic studies. Thus, the
strong bisignate ICD band in the long-wavelength absorption
range of compound 3a at high LDR clearly confirms the aggre-
gation of the dye at the DNA backbone (Fig. 3, A1).31 At lower
LDR, a less intense negative ICD band appears, which indicates
a different binding mode. But it should be noted that the latter
band is still overlapped by the ICD signal of the aggregate,
resulting in a combination of spectra that cannot be dissected.
Similarly, the CD bands in the absorption range of DNA and the
ligand (<320 nm) also severely overlap. As a result, this combi-
nation of overlapping bands, whose contribution also changes
with LDR, does not allow a conclusive binding mode analysis at
low LDR. At the same time, the negative LD signal in the
absorption range of 3a (Fig. 3, B1) clearly indicates an inter-
calative binding mode of this ligand with ct DNA.32

In the case of ligand 3b, the very intense bisignate CD
signal between 400 nm and 600 nm is maintained at all
employed LDR ratios, and in each case the bands correspond
to the two absorption maxima observed during photometric
titration (Fig. 3 A2 and B2). This observation shows that this
CD spectrum is also a combination of separate bands. Notably,
the ICD bands of the ligand are very strong, as seen directly
from the comparison with the DNA bands, and this is usually
observed for groove binders.33 The LD-spectroscopic analysis
supports this interpretation, as the positive LD band at the
long-wavelength absorption of the ligand unambiguously indi-
cates groove binding.31 The weak positive LD bands at 375 nm
and 440 nm seem to contradict the latter interpretation, but it
should be noted that the size and shape of the ligand do not
allow for a complete accommodation and fit of the whole
molecule within the groove, so that at least partially one of the
quinolizinium units point outside the groove or even interca-
late. In this arrangement, this quinolizinium chromophore is
decoupled from the conjugated π system and essentially
oriented in the same direction as the DNA bases, thus result-
ing in a positive LD signal.31 Such bisignate LD spectra have
also been observed with bichromophoric bis-aminonaphthali-
mide-substituted Tröger bases and interpreted similarly.34 It is
worth noting, however, that the intensity of CD and LD signals
decreased significantly at higher LDR, presumably because at
this higher ligand loading there are not sufficient binding
sites available in the grooves, thus reducing the relative
number of intercalated or groove-bound ligands.

The two ligands 3a and 3b do not carry special substituents
that may be involved in specific interactions with the DNA,
such as hydrogen bonding. Even the amino group is not avail-
able as it is sterically protected and the free lone pair of the
amino group is highly delocalized. Therefore, the association

of these ligands should be mainly governed by attractive dis-
persion interactions, such as π stacking and van der Waals
interactions, with the binding site and by the thermo-
dynamically favorable counter-ion release from the DNA upon
association of the cationic ligand.35 Therefore, the different
binding modes of ligands 3a and 3b are mainly based on their
different size and shape. Both compounds are structurally flex-
ible containing triphenylamine as a rather hydrophobic unit
and the quinolizinium as the DNA-binding fragment. In the
case of 3a, the bulky diaryl unit may point outside the binding
site or even accommodate partly in the groove when the quino-
lizinium intercalates into DNA. Obviously, this binding mode
is not favoured with 3b as only one of the two quinolizinium
units can intercalate and the majority of the molecule would
still protrude from the binding site so that it is still exposed to
the solvent, thus reducing the role of the hydrophobic effect as
a driving force for intercalation.35 As a result, ligand 3b binds
to the grooves because in this binding mode this sterically
demanding molecule fits better to the binding site as a whole,
which may be driven by entropic factors.36

The association of 3a and 3b with G4-DNA 22AG was con-
firmed with CD spectroscopy. In the presence of 3a and 3b,
the CD bands of the quadruplex 22AG change only marginally
(Fig. 3, C1 and C3), which indicates the preservation of the
quadruplex structure upon complex formation.37 The complex
formation is also clearly indicated by the increased melting
temperature, ΔTm, of the quadruplex in the presence of
ligands 3a and 3b, which indicates significant thermodynamic
stabilization of the quadruplex toward unfolding due to ligand
association. At the same time, the disappearance of the weak
shoulder around 250 nm usually denotes the disappearance of
one minor form from the equilibrium of different quadruplex
structures because of the stabilization of a basket-type or
chair-type quadruplex structure by the ligand.38 In the case of
ligand 3a, only a very weak ICD signal in the absorption range
of the ligand developed, which is often observed for ligands
that bind to the quadruplex by terminal π stacking.39 In con-
trast, the association of ligand 3b with 22AG leads to the for-
mation of a much more pronounced ICD signal, which is pro-
posed to be a characteristic feature of groove-binding G4-DNA
ligands.40

In the absence of DNA, the styrylquinolizinium derivatives
3a and 3b are weakly fluorescent with very low quantum yields
in aqueous buffer solution (Table 1) due to radiationless de-
activation by conformational relaxation of the excited state (see
Discussion above). Upon association with duplex and quadru-
plex DNA, however, the emission intensity of these ligands
increases significantly (Fig. 2). As observed for several DNA-
sensitive fluorescent light-up probes,14,15 this effect is most
likely the result of the restricted conformational freedom of
movement of the ligand within the binding site,41 which is
comparable to the light-up effect observed in glycerol.22

Similar fluorescence light-up effects on DNA binding have
been observed with annelated quinolizinium derivatives42 and
diphenylamino-substituted derivatives of quinolinium, pyridi-
nium and imidazolium.43
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Most interesting is the observation that the fluorescence
light-up effect of 3b on binding with ct DNA is 4 times stronger
than that of 3a (Fig. 4A). Considering that the light-up effect is
mainly caused by the restricted conformational flexibility of
the ligand in the sterically constrained binding site, and not
necessarily with the binding strength, this observation indi-
cates that the groove-bound ligand 3b is accommodated more
tightly in its binding site than the intercalated molecule 3a.
Conversely, when bound to G4-DNA, the light-up factor of 3a is
17 times larger than that of 3b (Fig. 4B), so that in this case
the conformational flexibility of 3a is more suppressed in the
DNA binding site.

Conclusion

In summary, it was demonstrated that the diphenylaminos-
tyryl-substituted quinolizinium derivatives 3a and 3b bind to
duplex and quadruplex DNA. Due to the significantly different
size and steric demand of these ligands they exhibit different
binding modes. Thus, 3a intercalates into ct DNA and binds
through π stacking to G4-DNA 22AG, whereas 3b favours
groove binding to both DNA forms. As the very low emission
intensity of these compounds increases strongly upon associ-
ation with DNA and the emission wavelength is close to the
NIR range, which is favourable for biological applications,
these compounds are promising platforms for the develop-
ment of DNA-sensitive fluorescent probes. In this regard, the
different effects of the actual DNA form and binding mode on
the extent of the light-up effect may be used for selective DNA
detection.
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